Given a set of points, clustering consists of finding a partition of a point set into k clusters such that the center to which a point is assigned is as close as possible. Most commonly, centers are points themselves, which leads to the famous k-median and k-means objectives. One may also choose centers to be j dimensional subspaces, which gives rise to subspace clustering. In this paper, we consider learning bounds for these problems. That is, given a set of n samples P drawn independently from some unknown, but fixed distribution D, how quickly does a solution computed on P converge to the optimal clustering of D? We give several near optimal results. In particular, 1. For center-based objectives, we show a convergence rate of ~O(√k/n). This matches the known optimal bounds of [Fefferman, Mitter, and Narayanan, Journal of the Mathematical Society 2016] and [Bartlett, Linder, and Lugosi, IEEE Trans. Inf. Theory 1998] for k-means and extends it to other important objectives such as k-median. 2. For subspace clustering with j-dimensional subspaces, we show a convergence rate of ~O(√(kj^2)/n). These are the first provable bounds for most of these problems. For the specific case of projective clustering, which generalizes k-means, we show a converge rate of Ω(√(kj)/n) is necessary, thereby proving that the bounds from [Fefferman, Mitter, and Narayanan, Journal of the Mathematical Society 2016] are essentially optimal.
On Generalization Bounds for Projective Clustering / Bucarelli, MARIA SOFIA; Larsen, Matilde; Schwiegelshohn, Chris; Toftrup, Mads. - 36:(2023). (Intervento presentato al convegno Advances in Neural Information Processing Systems tenutosi a New Orleans; USA).
On Generalization Bounds for Projective Clustering
Maria Sofia Bucarelli
;Chris Schwiegelshohn
;
2023
Abstract
Given a set of points, clustering consists of finding a partition of a point set into k clusters such that the center to which a point is assigned is as close as possible. Most commonly, centers are points themselves, which leads to the famous k-median and k-means objectives. One may also choose centers to be j dimensional subspaces, which gives rise to subspace clustering. In this paper, we consider learning bounds for these problems. That is, given a set of n samples P drawn independently from some unknown, but fixed distribution D, how quickly does a solution computed on P converge to the optimal clustering of D? We give several near optimal results. In particular, 1. For center-based objectives, we show a convergence rate of ~O(√k/n). This matches the known optimal bounds of [Fefferman, Mitter, and Narayanan, Journal of the Mathematical Society 2016] and [Bartlett, Linder, and Lugosi, IEEE Trans. Inf. Theory 1998] for k-means and extends it to other important objectives such as k-median. 2. For subspace clustering with j-dimensional subspaces, we show a convergence rate of ~O(√(kj^2)/n). These are the first provable bounds for most of these problems. For the specific case of projective clustering, which generalizes k-means, we show a converge rate of Ω(√(kj)/n) is necessary, thereby proving that the bounds from [Fefferman, Mitter, and Narayanan, Journal of the Mathematical Society 2016] are essentially optimal.File | Dimensione | Formato | |
---|---|---|---|
Bucarelli_On-Generalization_2023.pdf
accesso aperto
Note: https://proceedings.neurips.cc/paper_files/paper/2023/file/e30bf4765ae6b16a87fb4d7b0b3b3dec-Paper-Conference.pdf
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.