The paper presents a numerical investigation of an elastic metamaterial, i.e., a one-dimensional elastic waveguide, equipped with nonlocal (long-range) and nonlinear interactions. The dynamic behavior of the newly defined structure is described by nonlinear integro-differential equation of motion. Numerical simulations, comparing the linearized model and the nonlinear one, unveil the arising of wave-stopping and backward propagation phenomena.

Numerical simulations in nonlinear elastic metamaterials with nonlocal interaction / Coppo, F.; Mezzani, F.; Pensalfini, S.; Carcaterra, A.. - III:(2020), pp. 41-48. (Intervento presentato al convegno 1st International nonlinear dynamics conference, NODYCON 2019 tenutosi a Rome, Italy) [10.1007/978-3-030-34724-6_5].

Numerical simulations in nonlinear elastic metamaterials with nonlocal interaction

Coppo F.
;
Mezzani F.
;
Pensalfini S.;Carcaterra A.
2020

Abstract

The paper presents a numerical investigation of an elastic metamaterial, i.e., a one-dimensional elastic waveguide, equipped with nonlocal (long-range) and nonlinear interactions. The dynamic behavior of the newly defined structure is described by nonlinear integro-differential equation of motion. Numerical simulations, comparing the linearized model and the nonlinear one, unveil the arising of wave-stopping and backward propagation phenomena.
2020
1st International nonlinear dynamics conference, NODYCON 2019
elastic metamaterials; long-range interactions; negative group velocity; nonlinear; wave stopping
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Numerical simulations in nonlinear elastic metamaterials with nonlocal interaction / Coppo, F.; Mezzani, F.; Pensalfini, S.; Carcaterra, A.. - III:(2020), pp. 41-48. (Intervento presentato al convegno 1st International nonlinear dynamics conference, NODYCON 2019 tenutosi a Rome, Italy) [10.1007/978-3-030-34724-6_5].
File allegati a questo prodotto
File Dimensione Formato  
Coppo_Numerical_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 369.93 kB
Formato Adobe PDF
369.93 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1707227
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact