We prove a quantitative version of the classical Tits' alternative for discrete groups acting on packed Gromov-hyperbolic spaces supporting a convex geodesic bicombing. Some geometric consequences, as uniform estimates on systole, diastole, algebraic entropy and critical exponent of the groups, will be presented. Finally we will study the behaviour of these group actions under limits, providing new examples of compact classes of metric spaces.
Discrete groups of packed, non-positively curved, Gromov hyperbolic metric spaces / Cavallucci, Nicola; Sambusetti, Andrea. - In: GEOMETRIAE DEDICATA. - ISSN 0046-5755. - 218:2(2024), pp. 2-52. [10.1007/s10711-023-00874-z]
Discrete groups of packed, non-positively curved, Gromov hyperbolic metric spaces
Cavallucci, Nicola;Sambusetti, Andrea
2024
Abstract
We prove a quantitative version of the classical Tits' alternative for discrete groups acting on packed Gromov-hyperbolic spaces supporting a convex geodesic bicombing. Some geometric consequences, as uniform estimates on systole, diastole, algebraic entropy and critical exponent of the groups, will be presented. Finally we will study the behaviour of these group actions under limits, providing new examples of compact classes of metric spaces.File | Dimensione | Formato | |
---|---|---|---|
Cavallucci_Discrete-groups_2024.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
789.79 kB
Formato
Adobe PDF
|
789.79 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.