In this work, nanosized RHO zeolite samples with different Si/Al ratios were synthetized and tested for CO2 adsorption by combining in situ IR spectroscopy and in situ X-ray powder diffraction using synchrotron radiation. The structural changes of the RHO nanosized zeolites, subjected to high temperature treatment (350 °C) and CO2 adsorption (1 and 5 bar), studied by high-resolution X ray powder diffraction, indicated the presence of two phases with different cell parameters in both samples. The combination of the X-ray technique with IR allowed evaluation of the CO2 adsorption capacity of the samples and their adsorption dynamic. The results indicated that the CO2 adsorption capacity is mainly related to the sodium content in the nanosized RHO crystals. The performed adsorption experiments showed that 1 bar CO2 is sufficient to saturate the RHO samples at room temperature, and no change in the CO2 adsorption capacity at 5 bar was observed.

CO2 adsorption in nanosized RHO zeolites with different chemical compositions and crystallite sizes / Confalonieri, G.; Grand, J.; Arletti, R.; Barrier, N.; Mintova, S.. - In: MICROPOROUS AND MESOPOROUS MATERIALS. - ISSN 1387-1811. - 306:(2020), pp. 1-7. [10.1016/j.micromeso.2020.110394]

CO2 adsorption in nanosized RHO zeolites with different chemical compositions and crystallite sizes

Confalonieri G.;
2020

Abstract

In this work, nanosized RHO zeolite samples with different Si/Al ratios were synthetized and tested for CO2 adsorption by combining in situ IR spectroscopy and in situ X-ray powder diffraction using synchrotron radiation. The structural changes of the RHO nanosized zeolites, subjected to high temperature treatment (350 °C) and CO2 adsorption (1 and 5 bar), studied by high-resolution X ray powder diffraction, indicated the presence of two phases with different cell parameters in both samples. The combination of the X-ray technique with IR allowed evaluation of the CO2 adsorption capacity of the samples and their adsorption dynamic. The results indicated that the CO2 adsorption capacity is mainly related to the sodium content in the nanosized RHO crystals. The performed adsorption experiments showed that 1 bar CO2 is sufficient to saturate the RHO samples at room temperature, and no change in the CO2 adsorption capacity at 5 bar was observed.
2020
CO2 adsorption; In situ IR spectroscopy; In situ XRD; Na-Cs RHO; nanosized
01 Pubblicazione su rivista::01a Articolo in rivista
CO2 adsorption in nanosized RHO zeolites with different chemical compositions and crystallite sizes / Confalonieri, G.; Grand, J.; Arletti, R.; Barrier, N.; Mintova, S.. - In: MICROPOROUS AND MESOPOROUS MATERIALS. - ISSN 1387-1811. - 306:(2020), pp. 1-7. [10.1016/j.micromeso.2020.110394]
File allegati a questo prodotto
File Dimensione Formato  
Confalonieri_preprint_CO2 adsorption_2020.pdf

accesso aperto

Note: preprint
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF
Confalonieri_CO2 adsorption_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1706970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact