In this work we introduce new numerical compact finite-difference algorithms for modeling nonlinear signal propagation in transmission systems based on multimode optical fibers, in the presence of nonlinearity and random linear mode coupling. We compare the computational efficiency of these methods with respect to the standard split-step Fourier method, for different regimes of random mode coupling, such as the weak, the intermediate, and the strong coupling regime. We reveal that, in the intermediate random coupling regime, a non-iterative version of the compact scheme can be twice faster than the standard Fourier method

Numerical algorithms for nonlinear propagation in multimode optical fiber communication systems / Sidelnikov, Oleg; Fedoruk, Mikhail; Wabnitz, Stefan. - In: OPTICAL FIBER TECHNOLOGY. - ISSN 1068-5200. - 84:(2024), pp. 1-7. [10.1016/j.yofte.2024.103724]

Numerical algorithms for nonlinear propagation in multimode optical fiber communication systems

Wabnitz, Stefan
2024

Abstract

In this work we introduce new numerical compact finite-difference algorithms for modeling nonlinear signal propagation in transmission systems based on multimode optical fibers, in the presence of nonlinearity and random linear mode coupling. We compare the computational efficiency of these methods with respect to the standard split-step Fourier method, for different regimes of random mode coupling, such as the weak, the intermediate, and the strong coupling regime. We reveal that, in the intermediate random coupling regime, a non-iterative version of the compact scheme can be twice faster than the standard Fourier method
2024
optical fibers, Kerr effect, modulation instability fibers; nonlinear optics; optical solitons; Kerr effect; four wave mixing
01 Pubblicazione su rivista::01a Articolo in rivista
Numerical algorithms for nonlinear propagation in multimode optical fiber communication systems / Sidelnikov, Oleg; Fedoruk, Mikhail; Wabnitz, Stefan. - In: OPTICAL FIBER TECHNOLOGY. - ISSN 1068-5200. - 84:(2024), pp. 1-7. [10.1016/j.yofte.2024.103724]
File allegati a questo prodotto
File Dimensione Formato  
Sidelnikov_Numerical_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1706725
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact