Gender refers to the socially constructed roles, behaviours, expressions and identities of girls, women, boys, men and gender diverse people. Gender-related factors are seldom assessed as determinants of health outcomes, despite their powerful contribution. The Gender Outcomes INternational Group: to Further Well-being Development (GOING-FWD) project developed a standard five-step methodology applicable to retrospectively identify gender-related factors and assess their relationship to outcomes across selected cohorts of non-communicable chronic diseases from Austria, Canada, Spain, Sweden. Step 1 (identification of gender-related variables): Based on the gender framework of the Women Health Research Network (ie, identity, role, relations and institutionalised gender), and available literature for a certain disease, an optimal 'wish-list' of gender-related variables was created and discussed by experts. Step 2 (definition of outcomes): Data dictionaries were screened for clinical and patient-relevant outcomes, using the International Consortium for Health Outcome Measurement framework. Step 3 (building of feasible final list): a cross-validation between variables per database and the 'wish-list' was performed. Step 4 (retrospective data harmonisation): The harmonisation potential of variables was evaluated. Step 5 (definition of data structure and analysis): The following analytic strategies were identified: (1) local analysis of data not transferable followed by a meta-analysis combining study-level estimates; (2) centrally performed federated analysis of data, with the individual-level participant data remaining on local servers; (3) synthesising the data locally and performing a pooled analysis on the synthetic data and (4) central analysis of pooled transferable data. The application of the GOING-FWD multistep approach can help guide investigators to analyse gender and its impact on outcomes in previously collected data.
Identification and inclusion of gender factors in retrospective cohort studies: the GOING-FWD framework / Raparelli, Valeria; Norris, Colleen M.; Bender, Uri; Herrero, Maria Trinidad; Kautzky-Willer, Alexandra; Kublickiene, Karolina; El Emam, Khaled; Pilote, Louise. - In: BMJ GLOBAL HEALTH. - ISSN 2059-7908. - 6:4(2021). [10.1136/bmjgh-2021-005413]
Identification and inclusion of gender factors in retrospective cohort studies: the GOING-FWD framework
Raparelli, Valeria;
2021
Abstract
Gender refers to the socially constructed roles, behaviours, expressions and identities of girls, women, boys, men and gender diverse people. Gender-related factors are seldom assessed as determinants of health outcomes, despite their powerful contribution. The Gender Outcomes INternational Group: to Further Well-being Development (GOING-FWD) project developed a standard five-step methodology applicable to retrospectively identify gender-related factors and assess their relationship to outcomes across selected cohorts of non-communicable chronic diseases from Austria, Canada, Spain, Sweden. Step 1 (identification of gender-related variables): Based on the gender framework of the Women Health Research Network (ie, identity, role, relations and institutionalised gender), and available literature for a certain disease, an optimal 'wish-list' of gender-related variables was created and discussed by experts. Step 2 (definition of outcomes): Data dictionaries were screened for clinical and patient-relevant outcomes, using the International Consortium for Health Outcome Measurement framework. Step 3 (building of feasible final list): a cross-validation between variables per database and the 'wish-list' was performed. Step 4 (retrospective data harmonisation): The harmonisation potential of variables was evaluated. Step 5 (definition of data structure and analysis): The following analytic strategies were identified: (1) local analysis of data not transferable followed by a meta-analysis combining study-level estimates; (2) centrally performed federated analysis of data, with the individual-level participant data remaining on local servers; (3) synthesising the data locally and performing a pooled analysis on the synthetic data and (4) central analysis of pooled transferable data. The application of the GOING-FWD multistep approach can help guide investigators to analyse gender and its impact on outcomes in previously collected data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.