This work presents a framework for the generation of a multi-fidelity reduced order model (MF-ROM) of a combustion furnace operating in MILD conditions. The framework combines data compression by Proper Orthogonal Decomposition, information transfer between different fidelity models by Procrustes manifold alignment, and interpolation by CoKriging. Two- and three-dimensional simulations of the MILD combustion furnace with design parameters of air injector diameter, fuel composition, and equivalence ratio are fused to build the model. Moreover, a typical question related to MF-ROMs is tackled, that is, how many high-fidelity simulations should be employed to get a favorable trade-off between accuracy and training cost. Incremental sampling strategies are implemented to answer this question, and the results show that approximately half the training cost can be saved to obtain the same error values.

Incremental sampling methods for multi-fidelity surrogate modelling of a MILD combustion furnace / Özden, A.; Procacci, A.; Malpica Galassi, R.; Contino, F.; Parente, A.. - In: APPLIED THERMAL ENGINEERING. - ISSN 1359-4311. - 246:(2024). [10.1016/j.applthermaleng.2024.122902]

Incremental sampling methods for multi-fidelity surrogate modelling of a MILD combustion furnace

R. Malpica Galassi;
2024

Abstract

This work presents a framework for the generation of a multi-fidelity reduced order model (MF-ROM) of a combustion furnace operating in MILD conditions. The framework combines data compression by Proper Orthogonal Decomposition, information transfer between different fidelity models by Procrustes manifold alignment, and interpolation by CoKriging. Two- and three-dimensional simulations of the MILD combustion furnace with design parameters of air injector diameter, fuel composition, and equivalence ratio are fused to build the model. Moreover, a typical question related to MF-ROMs is tackled, that is, how many high-fidelity simulations should be employed to get a favorable trade-off between accuracy and training cost. Incremental sampling strategies are implemented to answer this question, and the results show that approximately half the training cost can be saved to obtain the same error values.
2024
multi-fidelity ROM; digital twin; co-kriging; proper orthogonal decomposition; manifold alignment
01 Pubblicazione su rivista::01a Articolo in rivista
Incremental sampling methods for multi-fidelity surrogate modelling of a MILD combustion furnace / Özden, A.; Procacci, A.; Malpica Galassi, R.; Contino, F.; Parente, A.. - In: APPLIED THERMAL ENGINEERING. - ISSN 1359-4311. - 246:(2024). [10.1016/j.applthermaleng.2024.122902]
File allegati a questo prodotto
File Dimensione Formato  
Özden_Postprint_Incremental_2024.pdf

embargo fino al 11/03/2026

Note: https://doi.org/10.1016/j.applthermaleng.2024.122902
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 9.31 MB
Formato Adobe PDF
9.31 MB Adobe PDF   Contatta l'autore
Özden_Incremental_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1706273
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact