In the past decade, we witnessed limited success in the clinical translation of therapeutic nanoparticles (NPs). One of the main reasons for this limited success is our poor understanding of the biological identity of NPs. Herein, we report magnetic levitation (MagLev) as a complementary analytical tool to investigate the homogeneity of the created protein corona (PC) coated NPs through an ex vivo model. Our results demonstrate that the MagLev system not only has the capacity to separate corona coated NPs, but also enables us to study the homogeneity/heterogeneity of the PC. Our findings suggest that current ex vivo isolation methods cause a heterogeneous coverage of PC profiles at the surface of NPs. The MagLev technique, therefore, would be instrumental in identifying and separating fully PC coated NPs which, in turn, enables us to achieve more accurate information on protein corona composition. Ultimately, we believe that the MagLev technique can be used for the fast screening of the homogeneity of corona coated NPs before quantitative analysis of the corona profile/composition, hence definitely improving our fundamental understanding of nano-bio interfaces.

Mapping the heterogeneity of protein corona by: Ex vivo magnetic levitation / Ashkarran, A. A.; Dararatana, N.; Crespy, D.; Caracciolo, G.; Mahmoudi, M.. - In: NANOSCALE. - ISSN 2040-3372. - 12:4(2020), pp. 2374-2383. [10.1039/c9nr10367h]

Mapping the heterogeneity of protein corona by: Ex vivo magnetic levitation

Caracciolo G.;
2020

Abstract

In the past decade, we witnessed limited success in the clinical translation of therapeutic nanoparticles (NPs). One of the main reasons for this limited success is our poor understanding of the biological identity of NPs. Herein, we report magnetic levitation (MagLev) as a complementary analytical tool to investigate the homogeneity of the created protein corona (PC) coated NPs through an ex vivo model. Our results demonstrate that the MagLev system not only has the capacity to separate corona coated NPs, but also enables us to study the homogeneity/heterogeneity of the PC. Our findings suggest that current ex vivo isolation methods cause a heterogeneous coverage of PC profiles at the surface of NPs. The MagLev technique, therefore, would be instrumental in identifying and separating fully PC coated NPs which, in turn, enables us to achieve more accurate information on protein corona composition. Ultimately, we believe that the MagLev technique can be used for the fast screening of the homogeneity of corona coated NPs before quantitative analysis of the corona profile/composition, hence definitely improving our fundamental understanding of nano-bio interfaces.
2020
nanoparticles; protein corona; magnetic levitation
01 Pubblicazione su rivista::01a Articolo in rivista
Mapping the heterogeneity of protein corona by: Ex vivo magnetic levitation / Ashkarran, A. A.; Dararatana, N.; Crespy, D.; Caracciolo, G.; Mahmoudi, M.. - In: NANOSCALE. - ISSN 2040-3372. - 12:4(2020), pp. 2374-2383. [10.1039/c9nr10367h]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1706146
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact