Nuclear breakdown was found to be the dominant route for DNA entry into the nucleus in actively dividing cells. The possibility that alternative routes contribute to DNA entry into the nucleus, however, cannot be ruled out. Here we address the process of lipofection by monitoring the localization of fluorescently-labelled DNA plasmids at the single-cell level by confocal imaging in living interphase cells. As test formulation we choose the cationic 3 beta-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and the zwitterionic helper lipid dioleoylphosphatidylethanolamine (DOPE) with plasmidic DNA pre-condensed by means of protamine. By exploiting the spectral shift of the fluorescent dye FM4-64 (N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenylhexatrienyl)-pyridinium 2Br) we monitor the position of the nuclear envelope (NE), while concomitantly imaging the whole nucleus (by Hoechst) and the DNA (by Cy3 fluorophore) in a multi-channel 3D confocal imaging experiment. Reported results show that DNA clusters are typically associated with the NE membrane in the form of tubular invaginations spanning the nuclear environment, but not completely trapped within the NE invaginations, i.e. the DNA may use these NE regions as entry-points towards the nucleus. These observations pave the way to investigating the molecular details of the postulated processes for a better exploitation of gene-delivery vectors, particularly for applications in non-dividing cells.

Probing the role of nuclear-envelope invaginations in the nuclear-entry route of lipofected DNA by multi-channel 3D confocal microscopy / Ferri, G.; Fiume, G.; Pozzi, D.; Caracciolo, G.; Cardarelli, F.. - In: COLLOIDS AND SURFACES. B, BIOINTERFACES. - ISSN 1873-4367. - 205:(2021). [10.1016/j.colsurfb.2021.111881]

Probing the role of nuclear-envelope invaginations in the nuclear-entry route of lipofected DNA by multi-channel 3D confocal microscopy

Pozzi D.;Caracciolo G.;
2021

Abstract

Nuclear breakdown was found to be the dominant route for DNA entry into the nucleus in actively dividing cells. The possibility that alternative routes contribute to DNA entry into the nucleus, however, cannot be ruled out. Here we address the process of lipofection by monitoring the localization of fluorescently-labelled DNA plasmids at the single-cell level by confocal imaging in living interphase cells. As test formulation we choose the cationic 3 beta-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and the zwitterionic helper lipid dioleoylphosphatidylethanolamine (DOPE) with plasmidic DNA pre-condensed by means of protamine. By exploiting the spectral shift of the fluorescent dye FM4-64 (N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenylhexatrienyl)-pyridinium 2Br) we monitor the position of the nuclear envelope (NE), while concomitantly imaging the whole nucleus (by Hoechst) and the DNA (by Cy3 fluorophore) in a multi-channel 3D confocal imaging experiment. Reported results show that DNA clusters are typically associated with the NE membrane in the form of tubular invaginations spanning the nuclear environment, but not completely trapped within the NE invaginations, i.e. the DNA may use these NE regions as entry-points towards the nucleus. These observations pave the way to investigating the molecular details of the postulated processes for a better exploitation of gene-delivery vectors, particularly for applications in non-dividing cells.
2021
3D confocal reconstruction; FM4-64; Fluorescent probe; Gene delivery; Lipofection; Nuclear architecture
01 Pubblicazione su rivista::01a Articolo in rivista
Probing the role of nuclear-envelope invaginations in the nuclear-entry route of lipofected DNA by multi-channel 3D confocal microscopy / Ferri, G.; Fiume, G.; Pozzi, D.; Caracciolo, G.; Cardarelli, F.. - In: COLLOIDS AND SURFACES. B, BIOINTERFACES. - ISSN 1873-4367. - 205:(2021). [10.1016/j.colsurfb.2021.111881]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1706130
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact