We determine the topology of the moduli space MS1;1(v) of surfaces of genus one with a Riemannian metric of constant curvature 1 and one conical point of angle 2 pi v. In particular, for v is an element of (2m-1, 2m + 1) nonodd, MS1,1(v) is connected, has orbifold Euler characteristic -1/12m(2), and its topology depends on the integer m > 0 only. For v= 2m + 1 odd, MS1,1(v) has 1/6 m(m + 1) connected components. For v= 2m even, MS1,1(v) has a natural complex structure and it is biholomorphic to H-2/G(m) for a certain subgroup Gm of SL(2, Z) of index m(2), which is nonnormal for m > 1.

Moduli of spherical tori with one conical point / Eremenko, Alexandre; Mondello, Gabriele; Panov, Dmitri. - In: GEOMETRY & TOPOLOGY. - ISSN 1364-0380. - 27:9(2023), pp. 3619-3698. [10.2140/gt.2023.27.3619]

Moduli of spherical tori with one conical point

Mondello, Gabriele;Panov, Dmitri
2023

Abstract

We determine the topology of the moduli space MS1;1(v) of surfaces of genus one with a Riemannian metric of constant curvature 1 and one conical point of angle 2 pi v. In particular, for v is an element of (2m-1, 2m + 1) nonodd, MS1,1(v) is connected, has orbifold Euler characteristic -1/12m(2), and its topology depends on the integer m > 0 only. For v= 2m + 1 odd, MS1,1(v) has 1/6 m(m + 1) connected components. For v= 2m even, MS1,1(v) has a natural complex structure and it is biholomorphic to H-2/G(m) for a certain subgroup Gm of SL(2, Z) of index m(2), which is nonnormal for m > 1.
2023
Spherical surfaces; Voronoi graph; moduli space
01 Pubblicazione su rivista::01a Articolo in rivista
Moduli of spherical tori with one conical point / Eremenko, Alexandre; Mondello, Gabriele; Panov, Dmitri. - In: GEOMETRY & TOPOLOGY. - ISSN 1364-0380. - 27:9(2023), pp. 3619-3698. [10.2140/gt.2023.27.3619]
File allegati a questo prodotto
File Dimensione Formato  
Eremenko_Moduli_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1706007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact