We show the existence and multiplicity of concentrating solutions to a pure Neumann slightly supercritical problem in a ball. This is the first existence result for this kind of problem in the supercritical regime. Since the solutions must satisfy a compatibility condition of zero average, all of them have to change sign. Our proofs are based on a Lyapunov-Schmidt reduction argument which incorporates the zero-average condition using suitable symmetries. Our approach also guarantees the existence and multiplicity of solutions to subcritical Neumann problems in annuli. More general symmetric domains (e.g., ellipsoids) are also discussed.

Existence of solutions to a slightly supercritical pure Neumann problem / Pistoia, Angela; Saldaña, Alberto; Tavares, Hugo. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 55:4(2023), pp. 3844-3887. [10.1137/22m1520360]

Existence of solutions to a slightly supercritical pure Neumann problem

Pistoia, Angela
;
Tavares, Hugo
2023

Abstract

We show the existence and multiplicity of concentrating solutions to a pure Neumann slightly supercritical problem in a ball. This is the first existence result for this kind of problem in the supercritical regime. Since the solutions must satisfy a compatibility condition of zero average, all of them have to change sign. Our proofs are based on a Lyapunov-Schmidt reduction argument which incorporates the zero-average condition using suitable symmetries. Our approach also guarantees the existence and multiplicity of solutions to subcritical Neumann problems in annuli. More general symmetric domains (e.g., ellipsoids) are also discussed.
2023
supercritical problems; Lyapunov--Schmidt reduction; semilinear elliptic equation; Neumann boundary conditions; symmetric solutions
01 Pubblicazione su rivista::01a Articolo in rivista
Existence of solutions to a slightly supercritical pure Neumann problem / Pistoia, Angela; Saldaña, Alberto; Tavares, Hugo. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 55:4(2023), pp. 3844-3887. [10.1137/22m1520360]
File allegati a questo prodotto
File Dimensione Formato  
Pistoia_Existence_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 567.24 kB
Formato Adobe PDF
567.24 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1706001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact