We study positive characteristic multiple zeta values associa- ted to general curves over Fq together with an Fq-rational point ∞ as introduced by Thakur. For the case of the projective line these values were defined as analogues of classical multiple zeta values. In the present paper we first establish a general non-commutative factorization of exponential series associated to certain lattices of rank one. Next we introduce universal families of multiple zeta values of Thakur and show that they are Eulerian in full generality. In particular, we prove a conjecture of Lara Rodríguez and Thakur in [28]. One of the main ingredients of the proofs is the notion of L-series in Tate algebras introduced by the third author [31] in 2012.

Universal families of Eulerian multiple zeta values in positive characteristic / Chung, Kwun; Ngo Dac, Tuan; Pellarin, Federico. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - (2023). [10.1016/j.aim.2023.109003]

Universal families of Eulerian multiple zeta values in positive characteristic

Federico Pellarin
2023

Abstract

We study positive characteristic multiple zeta values associa- ted to general curves over Fq together with an Fq-rational point ∞ as introduced by Thakur. For the case of the projective line these values were defined as analogues of classical multiple zeta values. In the present paper we first establish a general non-commutative factorization of exponential series associated to certain lattices of rank one. Next we introduce universal families of multiple zeta values of Thakur and show that they are Eulerian in full generality. In particular, we prove a conjecture of Lara Rodríguez and Thakur in [28]. One of the main ingredients of the proofs is the notion of L-series in Tate algebras introduced by the third author [31] in 2012.
2023
Eulerian Multiple Zeta Functions in positive characteristic L-values in Tate algebras
01 Pubblicazione su rivista::01a Articolo in rivista
Universal families of Eulerian multiple zeta values in positive characteristic / Chung, Kwun; Ngo Dac, Tuan; Pellarin, Federico. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - (2023). [10.1016/j.aim.2023.109003]
File allegati a questo prodotto
File Dimensione Formato  
Chung_Universal families_2023.pdf

solo gestori archivio

Note: Articolo pubblicato online
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 534.53 kB
Formato Adobe PDF
534.53 kB Adobe PDF   Contatta l'autore
Chung_preprint_Universal families_2023.pdf.pdf

accesso aperto

Note: documento arxiv
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 330.73 kB
Formato Adobe PDF
330.73 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1677422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact