3 D − 2 D dimensional reduction for hyperelastic thin films modelled through energies with point-dependent growth, assuming that the sample is clamped on the lateral boundary, is performed in the framework of Γ-convergence. Integral representation results, with a more regular Lagrangian related to the original energy density, are provided for the lower dimensional limiting energy, in different contexts.

Asymptotic analysis of thin structures with point-dependent energy growth / Eleuteri, Michela; Prinari, Francesca; Zappale, Elvira. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - (2024). [10.1142/S0218202524500258]

Asymptotic analysis of thin structures with point-dependent energy growth

Elvira Zappale
2024

Abstract

3 D − 2 D dimensional reduction for hyperelastic thin films modelled through energies with point-dependent growth, assuming that the sample is clamped on the lateral boundary, is performed in the framework of Γ-convergence. Integral representation results, with a more regular Lagrangian related to the original energy density, are provided for the lower dimensional limiting energy, in different contexts.
2024
dimensional reduction, variable exponent, gamma convergence
01 Pubblicazione su rivista::01a Articolo in rivista
Asymptotic analysis of thin structures with point-dependent energy growth / Eleuteri, Michela; Prinari, Francesca; Zappale, Elvira. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - (2024). [10.1142/S0218202524500258]
File allegati a questo prodotto
File Dimensione Formato  
Eleuteri_Asymptotic.2024.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 478.54 kB
Formato Adobe PDF
478.54 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1705899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact