We prove a conjecture of Seymour (1993) stating that for every apex-forest H1 and out-erplanar graph H2 there is an integer p such that every 2-connected graph of pathwidth at least p contains H1 or H2 as a minor. An independent proof was recently obtained by Dang and Thomas [3].

Seymour’s Conjecture on 2-Connected Graphs of Large Pathwidth / Huynh, T.; Joret, G.; Micek, P.; Wood, D. R.. - In: COMBINATORICA. - ISSN 0209-9683. - 40:6(2020), pp. 839-868. [10.1007/s00493-020-3941-3]

Seymour’s Conjecture on 2-Connected Graphs of Large Pathwidth

Huynh T.;Joret G.;
2020

Abstract

We prove a conjecture of Seymour (1993) stating that for every apex-forest H1 and out-erplanar graph H2 there is an integer p such that every 2-connected graph of pathwidth at least p contains H1 or H2 as a minor. An independent proof was recently obtained by Dang and Thomas [3].
2020
graphs, pathwidth, connectivity, outerplanar graphs, trees
01 Pubblicazione su rivista::01a Articolo in rivista
Seymour’s Conjecture on 2-Connected Graphs of Large Pathwidth / Huynh, T.; Joret, G.; Micek, P.; Wood, D. R.. - In: COMBINATORICA. - ISSN 0209-9683. - 40:6(2020), pp. 839-868. [10.1007/s00493-020-3941-3]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1705877
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact