Let G be an n-node graph without two disjoint odd cycles. The algorithm of Artmann, Weismantel and Zenklusen (STOC’17) for bimodular integer programs can be used to find a maximum weight stable set in G in strongly polynomial time. Building on structural results characterizing sufficiently connected graphs without two disjoint odd cycles, we construct a size-O(n^2) extended formulation for the stable set polytope of G.

Extended formulations for stable set polytopes of graphs without two disjoint odd cycles / Conforti, M.; Fiorini, S.; Huynh, T.; Weltge, S.. - In: MATHEMATICAL PROGRAMMING. - ISSN 1436-4646. - (2019).

Extended formulations for stable set polytopes of graphs without two disjoint odd cycles

Huynh, T.;
2019

Abstract

Let G be an n-node graph without two disjoint odd cycles. The algorithm of Artmann, Weismantel and Zenklusen (STOC’17) for bimodular integer programs can be used to find a maximum weight stable set in G in strongly polynomial time. Building on structural results characterizing sufficiently connected graphs without two disjoint odd cycles, we construct a size-O(n^2) extended formulation for the stable set polytope of G.
2019
Stable Sets, Extended Formulations, Graphs
01 Pubblicazione su rivista::01a Articolo in rivista
Extended formulations for stable set polytopes of graphs without two disjoint odd cycles / Conforti, M.; Fiorini, S.; Huynh, T.; Weltge, S.. - In: MATHEMATICAL PROGRAMMING. - ISSN 1436-4646. - (2019).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1705851
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact