Using standard results from higher (secondary) index theory, we prove that the positive scalar curvature bordism groups Pos^spin_{4n}(G × Z) are infinite for any n ≥ 1 and G a group with non-trivial torsion. We construct representatives of each of these classes which are connected and with fundamental group G × Z. We get the same result for Pos^spin_{4n+2} (G × Z) if G is finite and contains an element which is not conjugate to its inverse. This generalizes the main result of Kazaras, Ruberman, Saveliev, “On positive scalar curvature cobordism and the conformal Laplacian on end-periodic manifolds” to arbitrary even dimensions and arbitrary groups with torsion.

On positive scalar curvature bordism / Piazza, Paolo; Schick, Thomas; Zenobi, Vito Felice. - In: COMMUNICATIONS IN ANALYSIS AND GEOMETRY. - ISSN 1019-8385. - 30:9(2022), pp. 2049-2058. [10.4310/cag.2022.v30.n9.a4]

On positive scalar curvature bordism

Piazza, Paolo;
2022

Abstract

Using standard results from higher (secondary) index theory, we prove that the positive scalar curvature bordism groups Pos^spin_{4n}(G × Z) are infinite for any n ≥ 1 and G a group with non-trivial torsion. We construct representatives of each of these classes which are connected and with fundamental group G × Z. We get the same result for Pos^spin_{4n+2} (G × Z) if G is finite and contains an element which is not conjugate to its inverse. This generalizes the main result of Kazaras, Ruberman, Saveliev, “On positive scalar curvature cobordism and the conformal Laplacian on end-periodic manifolds” to arbitrary even dimensions and arbitrary groups with torsion.
2022
Spin bordism; Dirac operators; positive scalar curvature
01 Pubblicazione su rivista::01a Articolo in rivista
On positive scalar curvature bordism / Piazza, Paolo; Schick, Thomas; Zenobi, Vito Felice. - In: COMMUNICATIONS IN ANALYSIS AND GEOMETRY. - ISSN 1019-8385. - 30:9(2022), pp. 2049-2058. [10.4310/cag.2022.v30.n9.a4]
File allegati a questo prodotto
File Dimensione Formato  
Piazza_On-positive-scalar_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 146.81 kB
Formato Adobe PDF
146.81 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1705838
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact