We study a hard sphere gas at equilibrium, and prove that in the low density limit, the fluctuations converge to a Gaussian process governed by the fluctuating Boltzmann equation. This result holds for arbitrarily long times. The method of proof builds upon the weak convergence method introduced in the companion paper [8] which is improved by considering clusters of pseudo-trajectories as in [7].

Long-time derivation at equilibrium of the fluctuating Boltzmann equation / Bodineau, Thierry; Gallagher, Isabelle; Saint-Raymond, Laure; Simonella, Sergio. - In: ANNALS OF PROBABILITY. - ISSN 2168-894X. - (2024).

Long-time derivation at equilibrium of the fluctuating Boltzmann equation

Thierry Bodineau;Isabelle Gallagher;Sergio Simonella
2024

Abstract

We study a hard sphere gas at equilibrium, and prove that in the low density limit, the fluctuations converge to a Gaussian process governed by the fluctuating Boltzmann equation. This result holds for arbitrarily long times. The method of proof builds upon the weak convergence method introduced in the companion paper [8] which is improved by considering clusters of pseudo-trajectories as in [7].
2024
fluctuation theory; central limit theorem; Boltzmann equation
01 Pubblicazione su rivista::01a Articolo in rivista
Long-time derivation at equilibrium of the fluctuating Boltzmann equation / Bodineau, Thierry; Gallagher, Isabelle; Saint-Raymond, Laure; Simonella, Sergio. - In: ANNALS OF PROBABILITY. - ISSN 2168-894X. - (2024).
File allegati a questo prodotto
File Dimensione Formato  
Bodineau_preprint_Long-time-derivation_2024.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF
Bodineau_Long-time-derivation_2024.pdf.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1705824
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact