n analogue of the quadratic Wasserstein (or Monge-Kantorovich) distance between Borel probability measures on Rd has been defined in [14] for density operators on L2.(R^d), and used to estimate the convergence rate of various asymptotic theories in the context of quantum mechanics. The present work proves a Kantorovich-type duality theorem for this quantum variant of the Monge-Kantorovich or Wasserstein distance, and discusses the structure of op- timal quantum couplings. Specifically, we prove that, under some boundedness and constraint hypothesis on the Kantorovich potentials, optimal quantum cou- plings involve a gradient-type structure similar in the quantum paradigm to the Brenier transport map. On the contrary, when the two quantum densities have finite rank, the structure involved by the optimal coupling has, in general, no classical counterpart.

Towards optimal transport for quantum densities / Caglioti, Emanuele; Golse, François; Paul, Thierry. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 2036-2145. - 24:4(2023), pp. 1981-2045. [10.2422/2036-2145.202106_011]

Towards optimal transport for quantum densities

Caglioti, Emanuele;
2023

Abstract

n analogue of the quadratic Wasserstein (or Monge-Kantorovich) distance between Borel probability measures on Rd has been defined in [14] for density operators on L2.(R^d), and used to estimate the convergence rate of various asymptotic theories in the context of quantum mechanics. The present work proves a Kantorovich-type duality theorem for this quantum variant of the Monge-Kantorovich or Wasserstein distance, and discusses the structure of op- timal quantum couplings. Specifically, we prove that, under some boundedness and constraint hypothesis on the Kantorovich potentials, optimal quantum cou- plings involve a gradient-type structure similar in the quantum paradigm to the Brenier transport map. On the contrary, when the two quantum densities have finite rank, the structure involved by the optimal coupling has, in general, no classical counterpart.
2023
mathematical physics; quantum optimal trnasport; optimal transport
01 Pubblicazione su rivista::01a Articolo in rivista
Towards optimal transport for quantum densities / Caglioti, Emanuele; Golse, François; Paul, Thierry. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 2036-2145. - 24:4(2023), pp. 1981-2045. [10.2422/2036-2145.202106_011]
File allegati a questo prodotto
File Dimensione Formato  
Caglioti_Towards-optimal_2023.pdf

solo gestori archivio

Note: Articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 386.03 kB
Formato Adobe PDF
386.03 kB Adobe PDF   Contatta l'autore
Caglioti_preprint_Towards-optimal_2023.pdf.pdf

accesso aperto

Note: Preprint
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 458.45 kB
Formato Adobe PDF
458.45 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1705820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact