A subvariety of a quasi-projective complex variety X is called "universally irreducible" if its preimage inside the universal cover of X is irreducible. In this paper we investigate sufficient conditions for universal irreducibility. We consider in detail complete intersection subvarieties of small codimension inside Siegel moduli spaces of any finite level. Moreover, we show that, for g >= 3, every Siegel modular form is the product of finitely many irreducible analytic functions on the Siegel upper half-space Hg. We also discuss the special case of singular theta series of weight 1/2 and of Schottky forms.

Universally irreducible subvarieties of Siegel moduli spaces / Mondello, Gabriele; Salvati Manni, Riccardo. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 0075-4102. - 0:0(2024), pp. 37-70. [10.1515/crelle-2023-0078]

Universally irreducible subvarieties of Siegel moduli spaces

Mondello, Gabriele;Salvati Manni, Riccardo
2024

Abstract

A subvariety of a quasi-projective complex variety X is called "universally irreducible" if its preimage inside the universal cover of X is irreducible. In this paper we investigate sufficient conditions for universal irreducibility. We consider in detail complete intersection subvarieties of small codimension inside Siegel moduli spaces of any finite level. Moreover, we show that, for g >= 3, every Siegel modular form is the product of finitely many irreducible analytic functions on the Siegel upper half-space Hg. We also discuss the special case of singular theta series of weight 1/2 and of Schottky forms.
2024
Moduli space; Abelian varieties; irreducible modular forms
01 Pubblicazione su rivista::01a Articolo in rivista
Universally irreducible subvarieties of Siegel moduli spaces / Mondello, Gabriele; Salvati Manni, Riccardo. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 0075-4102. - 0:0(2024), pp. 37-70. [10.1515/crelle-2023-0078]
File allegati a questo prodotto
File Dimensione Formato  
Mondello_postprint_Universally-irreducible_2023.pdf

Open Access dal 22/11/2024

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 406.32 kB
Formato Adobe PDF
406.32 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1705812
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact