We consider the elliptic system-Delta u(i) = u(i)(3)+ Sigma(q+1)(j=1 j not equal i) beta(ij)u(i)u(j)(2) in R-4, i = 1, ..., q + 1,when alpha := beta(ij) and beta := beta(i(q+1)) = beta((q+1)j) for any i, j = 1, ... , q. If beta < 0 and |beta| is small enough we build solutions such that each component u(1), . . . , u(q) blows-up at the vertices of q polygons placed in different great circles which are linked to each other, and the last component u(q+1) looks like the radial positive solution of the single equation. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org /licenses/by-nc-nd /4 .0/).

Segregated solutions for a critical elliptic system with a small interspecies repulsive force / Chen, Haixia; Medina, Maria; Pistoia, Angela. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 284:10(2023). [10.1016/j.jfa.2023.109882]

Segregated solutions for a critical elliptic system with a small interspecies repulsive force

Pistoia, Angela
2023

Abstract

We consider the elliptic system-Delta u(i) = u(i)(3)+ Sigma(q+1)(j=1 j not equal i) beta(ij)u(i)u(j)(2) in R-4, i = 1, ..., q + 1,when alpha := beta(ij) and beta := beta(i(q+1)) = beta((q+1)j) for any i, j = 1, ... , q. If beta < 0 and |beta| is small enough we build solutions such that each component u(1), . . . , u(q) blows-up at the vertices of q polygons placed in different great circles which are linked to each other, and the last component u(q+1) looks like the radial positive solution of the single equation. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org /licenses/by-nc-nd /4 .0/).
2023
Elliptic systems; Critical growth; Segregated solutions; Blow-up solutions
01 Pubblicazione su rivista::01a Articolo in rivista
Segregated solutions for a critical elliptic system with a small interspecies repulsive force / Chen, Haixia; Medina, Maria; Pistoia, Angela. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 284:10(2023). [10.1016/j.jfa.2023.109882]
File allegati a questo prodotto
File Dimensione Formato  
Chen_Segregated_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 557.84 kB
Formato Adobe PDF
557.84 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1705195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact