We construct multiple solutions to the nonlocal Liouville equation ( - \Delta )1 2u = K(x)eu in \BbbR . More precisely, for K of the form K(x) = 1 + \varepsilon \kappa (x) with \varepsilon \in (0,1) small and \ k a p p a \in C1,\alpha (\BbbR )\cap L\infty (\BbbR ) for some \alpha >0, we prove the existence of multiple solutions to the above equa tion bifurcating from the bubbles. These solutions provide examples of flat metrics in the half-plane with prescribed geodesic curvature K(x) on its boundary. Furthermore, they imply the existence of multiple ground state soliton solutions for the Calogero-Moser derivative nonlinear Schr\"odinger equation

Nonuniqueness for the nonlocal Liouville equation in \(\mathbb{R}\) and applications / Battaglia, Luca; Cozzi, Matteo; Fernández, Antonio J.; Pistoia, Angela. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 55:5(2023), pp. 4816-4842. [10.1137/22m1538004]

Nonuniqueness for the nonlocal Liouville equation in \(\mathbb{R}\) and applications

Cozzi, Matteo;Pistoia, Angela
2023

Abstract

We construct multiple solutions to the nonlocal Liouville equation ( - \Delta )1 2u = K(x)eu in \BbbR . More precisely, for K of the form K(x) = 1 + \varepsilon \kappa (x) with \varepsilon \in (0,1) small and \ k a p p a \in C1,\alpha (\BbbR )\cap L\infty (\BbbR ) for some \alpha >0, we prove the existence of multiple solutions to the above equa tion bifurcating from the bubbles. These solutions provide examples of flat metrics in the half-plane with prescribed geodesic curvature K(x) on its boundary. Furthermore, they imply the existence of multiple ground state soliton solutions for the Calogero-Moser derivative nonlinear Schr\"odinger equation
2023
Liouville equation, half-Laplacian, multiplicity results, Lyapunov-Schmidt reduction, Brouwer degree
01 Pubblicazione su rivista::01a Articolo in rivista
Nonuniqueness for the nonlocal Liouville equation in \(\mathbb{R}\) and applications / Battaglia, Luca; Cozzi, Matteo; Fernández, Antonio J.; Pistoia, Angela. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 55:5(2023), pp. 4816-4842. [10.1137/22m1538004]
File allegati a questo prodotto
File Dimensione Formato  
Battaglia_Nonuniqueness_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 494.55 kB
Formato Adobe PDF
494.55 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1705194
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact