We construct multiple solutions to the nonlocal Liouville equation ( - \Delta )1 2u = K(x)eu in \BbbR . More precisely, for K of the form K(x) = 1 + \varepsilon \kappa (x) with \varepsilon \in (0,1) small and \ k a p p a \in C1,\alpha (\BbbR )\cap L\infty (\BbbR ) for some \alpha >0, we prove the existence of multiple solutions to the above equa tion bifurcating from the bubbles. These solutions provide examples of flat metrics in the half-plane with prescribed geodesic curvature K(x) on its boundary. Furthermore, they imply the existence of multiple ground state soliton solutions for the Calogero-Moser derivative nonlinear Schr\"odinger equation
Nonuniqueness for the nonlocal Liouville equation in \(\mathbb{R}\) and applications / Battaglia, Luca; Cozzi, Matteo; Fernández, Antonio J.; Pistoia, Angela. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 55:5(2023), pp. 4816-4842. [10.1137/22m1538004]
Nonuniqueness for the nonlocal Liouville equation in \(\mathbb{R}\) and applications
Cozzi, Matteo;Pistoia, Angela
2023
Abstract
We construct multiple solutions to the nonlocal Liouville equation ( - \Delta )1 2u = K(x)eu in \BbbR . More precisely, for K of the form K(x) = 1 + \varepsilon \kappa (x) with \varepsilon \in (0,1) small and \ k a p p a \in C1,\alpha (\BbbR )\cap L\infty (\BbbR ) for some \alpha >0, we prove the existence of multiple solutions to the above equa tion bifurcating from the bubbles. These solutions provide examples of flat metrics in the half-plane with prescribed geodesic curvature K(x) on its boundary. Furthermore, they imply the existence of multiple ground state soliton solutions for the Calogero-Moser derivative nonlinear Schr\"odinger equationFile | Dimensione | Formato | |
---|---|---|---|
Battaglia_Nonuniqueness_2023.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
494.55 kB
Formato
Adobe PDF
|
494.55 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.