For p ≥ 2, the p-adic ring C∗-algebra Qp is the universal C∗-algebra generated by a unitary U and an isometry Sp such that (Equation presented) and (Equation presented). For any k coprime to p we define an endomorphism χk ∈ End(Qp) by setting χk(U):= Uk and χk(Sp):= Sp. We then compute the entropy of χk, which turns out to be log |k|. Finally, for selected values of k we also compute the Watatani index of χk showing that the entropy is the natural logarithm of the index.
On the entropy and index of the winding endomorphisms of p-adic ring C∗-algebras / Aiello, V.; Rossi, S.. - In: STUDIA MATHEMATICA. - ISSN 0039-3223. - 262:3(2022), pp. 305-326. [10.4064/sm201125-9-2]
On the entropy and index of the winding endomorphisms of p-adic ring C∗-algebras
Aiello V.
;
2022
Abstract
For p ≥ 2, the p-adic ring C∗-algebra Qp is the universal C∗-algebra generated by a unitary U and an isometry Sp such that (Equation presented) and (Equation presented). For any k coprime to p we define an endomorphism χk ∈ End(Qp) by setting χk(U):= Uk and χk(Sp):= Sp. We then compute the entropy of χk, which turns out to be log |k|. Finally, for selected values of k we also compute the Watatani index of χk showing that the entropy is the natural logarithm of the index.File | Dimensione | Formato | |
---|---|---|---|
Aiello_On-the-entropy_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
479.47 kB
Formato
Adobe PDF
|
479.47 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.