Recently, Vaughan Jones introduced a construction which yields oriented knots and links from elements of the oriented Thompson group (formula presented). Here we prove, by analogy with Alexander’s classical theorem establishing that every knot or link can be represented as a closed braid, that, given an oriented knot/link (formula presented), there exists an element g in (formula presented) whose closure (formula presented).

On the alexander theorem for the oriented thompson group (formula presented) / Aiello, V.. - In: ALGEBRAIC AND GEOMETRIC TOPOLOGY. - ISSN 1472-2747. - 20:1(2020), pp. 429-438. [10.2140/agt.2020.20.429]

On the alexander theorem for the oriented thompson group (formula presented)

Aiello V.
Membro del Collaboration Group
2020

Abstract

Recently, Vaughan Jones introduced a construction which yields oriented knots and links from elements of the oriented Thompson group (formula presented). Here we prove, by analogy with Alexander’s classical theorem establishing that every knot or link can be represented as a closed braid, that, given an oriented knot/link (formula presented), there exists an element g in (formula presented) whose closure (formula presented).
2020
knot theory; low-dimensional topology; thompson group
01 Pubblicazione su rivista::01a Articolo in rivista
On the alexander theorem for the oriented thompson group (formula presented) / Aiello, V.. - In: ALGEBRAIC AND GEOMETRIC TOPOLOGY. - ISSN 1472-2747. - 20:1(2020), pp. 429-438. [10.2140/agt.2020.20.429]
File allegati a questo prodotto
File Dimensione Formato  
Aiello_On-the-Alexander-theorem_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 243.84 kB
Formato Adobe PDF
243.84 kB Adobe PDF   Contatta l'autore
Aiello_postprint_On-the-Alexander-theorem_2020.pdf.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 147.86 kB
Formato Adobe PDF
147.86 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1705149
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact