Recently, Vaughan Jones introduced a construction which yields oriented knots and links from elements of the oriented Thompson group (formula presented). Here we prove, by analogy with Alexander’s classical theorem establishing that every knot or link can be represented as a closed braid, that, given an oriented knot/link (formula presented), there exists an element g in (formula presented) whose closure (formula presented).
On the alexander theorem for the oriented thompson group (formula presented) / Aiello, V.. - In: ALGEBRAIC AND GEOMETRIC TOPOLOGY. - ISSN 1472-2747. - 20:1(2020), pp. 429-438. [10.2140/agt.2020.20.429]
On the alexander theorem for the oriented thompson group (formula presented)
Aiello V.
Membro del Collaboration Group
2020
Abstract
Recently, Vaughan Jones introduced a construction which yields oriented knots and links from elements of the oriented Thompson group (formula presented). Here we prove, by analogy with Alexander’s classical theorem establishing that every knot or link can be represented as a closed braid, that, given an oriented knot/link (formula presented), there exists an element g in (formula presented) whose closure (formula presented).File | Dimensione | Formato | |
---|---|---|---|
Aiello_On-the-Alexander-theorem_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
243.84 kB
Formato
Adobe PDF
|
243.84 kB | Adobe PDF | Contatta l'autore |
Aiello_postprint_On-the-Alexander-theorem_2020.pdf.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
147.86 kB
Formato
Adobe PDF
|
147.86 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.