Although the concept of quaternion neural networks (QNNs) is not entirely new, interest in this type of network has increased recently. The possibilities they offer for effectively processing datasets characterised by inherent multidimensionality make them an interesting object of study and investigation. This contribution aims at highlighting the relevant key principles underlying these adaptive architectures and at providing an essential overview of the different classes and application areas available, serving as a tutorial introduction to the world of hypercomplex neural networks.

Quaternion neural networks for multidimensional applications. An Overview / Buscarino, A.; Famoso, C.; Comminiello, D.; Patane, L.. - (2023), pp. 1-4. (Intervento presentato al convegno 30th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2023 tenutosi a Istanbul; Turkey) [10.1109/ICECS58634.2023.10382881].

Quaternion neural networks for multidimensional applications. An Overview

Comminiello D.;
2023

Abstract

Although the concept of quaternion neural networks (QNNs) is not entirely new, interest in this type of network has increased recently. The possibilities they offer for effectively processing datasets characterised by inherent multidimensionality make them an interesting object of study and investigation. This contribution aims at highlighting the relevant key principles underlying these adaptive architectures and at providing an essential overview of the different classes and application areas available, serving as a tutorial introduction to the world of hypercomplex neural networks.
2023
30th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2023
convolutional neural networks; neural networks; quaternion-valued neural networks; quaternions; recurrent neural networks
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Quaternion neural networks for multidimensional applications. An Overview / Buscarino, A.; Famoso, C.; Comminiello, D.; Patane, L.. - (2023), pp. 1-4. (Intervento presentato al convegno 30th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2023 tenutosi a Istanbul; Turkey) [10.1109/ICECS58634.2023.10382881].
File allegati a questo prodotto
File Dimensione Formato  
Buscarino_Quaternion Neural Networks_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 234.31 kB
Formato Adobe PDF
234.31 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1705128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact