The present PhD thesis aims at characterizing hydraulic mortars from ancient Roman aqueducts and cisterns, to unveil their composition and evaluate their hydraulicity, in order to formulate new restoration mortars, sustainable and compatible with the ancient ones. The research starts from the selection of archaeological remains of aqueducts and cisterns in the city of Rome and focuses on the mortars from the inner parts of the ducts and of the tanks, collecting samples from areas in contact or close to water. For the characterization of archaeological samples, a multi-analytical approach has been applied. Optical microscopy in thin section (OM) and X-ray Powder Diffraction (XRPD) are at the base of the approach used, as they give information about the mineralogical composition and allows the petrographic description of the mortars. For a micro-morphological and microchemical investigation, scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) has been used on thin sections. The discovery of an amorphous binder in some of the samples set a challenge to find innovative techniques to apply in the field of archaeometry: among them, high resolution field emission scanning electron microscopy (HR-FESEM), X-ray absorption near edge spectroscopy (XANES) and pair distribution function analysis (PDF) have been used to gain information on the composition of this type of binder and on its atomic arrangement. The evaluation of the hydraulicity of the mortars has been carried out applying thermogravimetric analysis (TGA) on the binder fraction (< 63 µm) and checking the composition of the samples before and after the analysis using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). From the characterization of the archaeological mortar samples and the evaluation of their hydraulicity, this research attests the different uses of materials with pozzolanic behavior, both natural and artificial, the hydraulic character of all the samples under investigation, and the enhanced hydraulicity due to the amorphous binder, which can be described as a C-(N,K)-A-S-H gel-like binder. Starting from the information obtained through the archaeometric characterization of the ancient Roman mortars, the experimentation of new mortars feasible for restoration has begun. The aim was to use materials compatible with the ancient ones, that were able to guarantee hydraulicity to the mortar, and which must be sustainable in order to reduce the CO2 emissions related to cement production. In the end, this PhD thesis shows how our collective cultural heritage is not only an important testimony of our past, which we must understand how to preserve, but it conceals information that can be useful also for contemporary applications and are still waiting to be revealed.

La presente tesi di dottorato si propone di caratterizzare le malte idrauliche provenienti dagli acquedotti e dalle cisterne di epoca romana, per poter indagare la loro composizione e valutarne l’idraulicità, al fine di formulare nuove malte di restauro, sostenibili a livello ambientale e compatibili con quelle antiche. La ricerca parte dalla selezione dei resti archeologici di acquedotti e cisterne collocati nella città di Roma e dintorni, e si focalizza sulle malte provenienti dai condotti e dai rivestimenti interni di queste strutture, campionando materiale dalle aree in contatto con l’acqua o nelle immediate prossimità. Per la caratterizzazione delle malte archeologiche è stato impiegato un approccio multi-analitico. La microscopia ottica in sezione sottile (OM) e la diffrattometria a raggi X (XRPD) costituiscono il punto di partenza dell’approccio utilizzato, poiché consentono di ottenere la caratterizzazione petrografica e mineralogica del campione. Per ottenere una caratterizzazione microchimica e micro-morfologica dei campioni in sezione sottile è stata invece utilizzata la microscopia elettronica a scansione con microanalisi EDS (SEM-EDS). La scoperta di un legante amorfo in alcuni campioni ha posto l’interessante sfida di trovare nuove tecniche analitiche da applicare nel campo dell'archeometria: tra queste, la microscopia elettronica a scansione ad alta risoluzione ad emissione di campo (HR-FESEM), la spettroscopia XANES (X-ray absorption near edge spectroscopy) e l’analisi PDF (Pair Distribution Function) sono stati utilizzati per ottenere informazioni sulla composizione di questo tipo di legante e sulla sua disposizione atomica. Per la valutazione dell’idraulicità è stata impiegata l’analisi termogravimetrica (TGA) sulla frazione relativa al legante (< 63 µm), in abbinamento con analisi di spettroscopia infrarossa in trasformata di Fourier tramite riflessione totale attenuata (FTIR-ATR) sul legante prima e dopo l’analisi. Dalla caratterizzazione delle malte di epoca romana e dalla valutazione della loro idraulicità, questo studio è stato in grado di attestare l’impiego differenziato di materiali a comportamento pozzolanico, sia naturali che artificiali, il carattere idraulico di tutti i campioni analizzati, e l’elevata idraulicità legata alla presenza di un legante amorfo, che grazie alle analisi è stato possibile descrivere come un legante simil gel con composizione C-(N,K)-A-S-H. A partire dalle informazioni ottenute attraverso la caratterizzazione archeometrica delle malte antiche, è iniziata la sperimentazione di nuove malte per il restauro, utilizzando materiali compatibili con quelli antichi, capaci di garantire idraulicità alla malta, e sostenibili, al fine di ridurre le emissioni di CO2 legate alla produzione di cemento. In conclusione, questa tesi di dottorato mostra come il patrimonio culturale non sia solo un’inestimabile testimonianza del nostro passato che dobbiamo imparare a preservare, ma in realtà cela informazioni utili anche per applicazioni contemporanee, che sono in attesa di essere svelate.

Unlocking the secrets of hydraulic Roman mortars for new applications / Calzolari, Laura. - (2024 Mar 21).

Unlocking the secrets of hydraulic Roman mortars for new applications

CALZOLARI, LAURA
21/03/2024

Abstract

The present PhD thesis aims at characterizing hydraulic mortars from ancient Roman aqueducts and cisterns, to unveil their composition and evaluate their hydraulicity, in order to formulate new restoration mortars, sustainable and compatible with the ancient ones. The research starts from the selection of archaeological remains of aqueducts and cisterns in the city of Rome and focuses on the mortars from the inner parts of the ducts and of the tanks, collecting samples from areas in contact or close to water. For the characterization of archaeological samples, a multi-analytical approach has been applied. Optical microscopy in thin section (OM) and X-ray Powder Diffraction (XRPD) are at the base of the approach used, as they give information about the mineralogical composition and allows the petrographic description of the mortars. For a micro-morphological and microchemical investigation, scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) has been used on thin sections. The discovery of an amorphous binder in some of the samples set a challenge to find innovative techniques to apply in the field of archaeometry: among them, high resolution field emission scanning electron microscopy (HR-FESEM), X-ray absorption near edge spectroscopy (XANES) and pair distribution function analysis (PDF) have been used to gain information on the composition of this type of binder and on its atomic arrangement. The evaluation of the hydraulicity of the mortars has been carried out applying thermogravimetric analysis (TGA) on the binder fraction (< 63 µm) and checking the composition of the samples before and after the analysis using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). From the characterization of the archaeological mortar samples and the evaluation of their hydraulicity, this research attests the different uses of materials with pozzolanic behavior, both natural and artificial, the hydraulic character of all the samples under investigation, and the enhanced hydraulicity due to the amorphous binder, which can be described as a C-(N,K)-A-S-H gel-like binder. Starting from the information obtained through the archaeometric characterization of the ancient Roman mortars, the experimentation of new mortars feasible for restoration has begun. The aim was to use materials compatible with the ancient ones, that were able to guarantee hydraulicity to the mortar, and which must be sustainable in order to reduce the CO2 emissions related to cement production. In the end, this PhD thesis shows how our collective cultural heritage is not only an important testimony of our past, which we must understand how to preserve, but it conceals information that can be useful also for contemporary applications and are still waiting to be revealed.
21-mar-2024
File allegati a questo prodotto
File Dimensione Formato  
Tesi_dottorato_Calzolari.pdf

embargo fino al 21/03/2025

Note: Tesi completa
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 26.7 MB
Formato Adobe PDF
26.7 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1705011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact