We introduce a model of Poisson random waves in S2 and we study Quantitative Central Limit Theorems when both the rate of the Poisson process and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite -dimensional distributions, harmonic coefficients and convergence in law in functional spaces, and we investigate carefully the interplay between the rate of divergence of eigenvalues and Poisson governing measures.
Spherical Poisson waves / Bourguin, Solesne; Durastanti, Claudio; Marinucci, Domenico; Todino, Anna Paola. - In: ELECTRONIC JOURNAL OF PROBABILITY. - ISSN 1083-6489. - 29:none(2024). [10.1214/23-ejp1071]
Spherical Poisson waves
Durastanti, Claudio;Marinucci, Domenico;Todino, Anna Paola
2024
Abstract
We introduce a model of Poisson random waves in S2 and we study Quantitative Central Limit Theorems when both the rate of the Poisson process and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite -dimensional distributions, harmonic coefficients and convergence in law in functional spaces, and we investigate carefully the interplay between the rate of divergence of eigenvalues and Poisson governing measures.File | Dimensione | Formato | |
---|---|---|---|
Bourguin_Spherical_2024 .pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
312.96 kB
Formato
Adobe PDF
|
312.96 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.