We introduce a model of Poisson random waves in S2 and we study Quantitative Central Limit Theorems when both the rate of the Poisson process and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite -dimensional distributions, harmonic coefficients and convergence in law in functional spaces, and we investigate carefully the interplay between the rate of divergence of eigenvalues and Poisson governing measures.

Spherical Poisson waves / Bourguin, Solesne; Durastanti, Claudio; Marinucci, Domenico; Todino, Anna Paola. - In: ELECTRONIC JOURNAL OF PROBABILITY. - ISSN 1083-6489. - 29:none(2024). [10.1214/23-ejp1071]

Spherical Poisson waves

Durastanti, Claudio;Marinucci, Domenico;Todino, Anna Paola
2024

Abstract

We introduce a model of Poisson random waves in S2 and we study Quantitative Central Limit Theorems when both the rate of the Poisson process and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite -dimensional distributions, harmonic coefficients and convergence in law in functional spaces, and we investigate carefully the interplay between the rate of divergence of eigenvalues and Poisson governing measures.
2024
random spherical eigenfunctions; Poisson random fields; quantitative central limit theorems
01 Pubblicazione su rivista::01a Articolo in rivista
Spherical Poisson waves / Bourguin, Solesne; Durastanti, Claudio; Marinucci, Domenico; Todino, Anna Paola. - In: ELECTRONIC JOURNAL OF PROBABILITY. - ISSN 1083-6489. - 29:none(2024). [10.1214/23-ejp1071]
File allegati a questo prodotto
File Dimensione Formato  
Bourguin_Spherical_2024 .pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 312.96 kB
Formato Adobe PDF
312.96 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1704471
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact