We explore the benefits of forecast combinations based on forecast-encompassing tests compared to simple averages and to Bates–Granger combinations. We also consider a new combination algorithm that fuses test-based and Bates–Granger weighting. For a realistic simulation design, we generate multivariate time series samples from a macroeconomic DSGE-VAR (dynamic stochastic general equilibrium–vector autoregressive) model. Results generally support Bates–Granger over uniform weighting, whereas benefits of test-based weights depend on the sample size and on the prediction horizon. In a corresponding application to real-world data, simple averaging performs best. Uniform averages may be the weighting scheme that is most robust to empirically observed irregularities.
Forecast Combinations in a DSGE-VAR Lab / Costantini, M; Gunter, U; Kunst, R. - In: JOURNAL OF FORECASTING. - ISSN 0277-6693. - 36:(2017), pp. 305-324. [10.1002/for.2427]
Forecast Combinations in a DSGE-VAR Lab
COSTANTINI M;
2017
Abstract
We explore the benefits of forecast combinations based on forecast-encompassing tests compared to simple averages and to Bates–Granger combinations. We also consider a new combination algorithm that fuses test-based and Bates–Granger weighting. For a realistic simulation design, we generate multivariate time series samples from a macroeconomic DSGE-VAR (dynamic stochastic general equilibrium–vector autoregressive) model. Results generally support Bates–Granger over uniform weighting, whereas benefits of test-based weights depend on the sample size and on the prediction horizon. In a corresponding application to real-world data, simple averaging performs best. Uniform averages may be the weighting scheme that is most robust to empirically observed irregularities.File | Dimensione | Formato | |
---|---|---|---|
Costantini_et_al_JF_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.