We discuss counterexamples to the validity of the weak Maximum Principle for linear elliptic systems with zero and first order couplings and prove, through a suitable reduction to a nonlinear scalar equation, a quite general result showing that some algebraic condition on the structure of gradient couplings and a cooperativity condition on the matrix of zero order couplings guarantee the existence of invariant cones in the sense of Weinberger [22].

Invariant cones for linear elliptic systems with gradient coupling / Capuzzo Dolcetta, I.; Rossi, Luca; Vitolo, Antonio. - In: PURE AND APPLIED FUNCTIONAL ANALYSIS. - ISSN 2189-3756. - 8:1(2023), pp. 117-132.

Invariant cones for linear elliptic systems with gradient coupling

I. Capuzzo Dolcetta;Luca Rossi;
2023

Abstract

We discuss counterexamples to the validity of the weak Maximum Principle for linear elliptic systems with zero and first order couplings and prove, through a suitable reduction to a nonlinear scalar equation, a quite general result showing that some algebraic condition on the structure of gradient couplings and a cooperativity condition on the matrix of zero order couplings guarantee the existence of invariant cones in the sense of Weinberger [22].
2023
elliptic differential inequalities; gradient coupling; weak Maximum Principle; invariant cones; Bellman operators; principal eigenvalue
01 Pubblicazione su rivista::01a Articolo in rivista
Invariant cones for linear elliptic systems with gradient coupling / Capuzzo Dolcetta, I.; Rossi, Luca; Vitolo, Antonio. - In: PURE AND APPLIED FUNCTIONAL ANALYSIS. - ISSN 2189-3756. - 8:1(2023), pp. 117-132.
File allegati a questo prodotto
File Dimensione Formato  
Capuzzo Dolcetta_postprint_Invariant-cones_2023.pdf

solo gestori archivio

Note: articolo
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 409.54 kB
Formato Adobe PDF
409.54 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1703283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact