We discuss counterexamples to the validity of the weak Maximum Principle for linear elliptic systems with zero and first order couplings and prove, through a suitable reduction to a nonlinear scalar equation, a quite general result showing that some algebraic condition on the structure of gradient couplings and a cooperativity condition on the matrix of zero order couplings guarantee the existence of invariant cones in the sense of Weinberger [22].
Invariant cones for linear elliptic systems with gradient coupling / Capuzzo Dolcetta, I.; Rossi, Luca; Vitolo, Antonio. - In: PURE AND APPLIED FUNCTIONAL ANALYSIS. - ISSN 2189-3756. - 8:1(2023), pp. 117-132.
Invariant cones for linear elliptic systems with gradient coupling
I. Capuzzo Dolcetta;Luca Rossi;
2023
Abstract
We discuss counterexamples to the validity of the weak Maximum Principle for linear elliptic systems with zero and first order couplings and prove, through a suitable reduction to a nonlinear scalar equation, a quite general result showing that some algebraic condition on the structure of gradient couplings and a cooperativity condition on the matrix of zero order couplings guarantee the existence of invariant cones in the sense of Weinberger [22].File | Dimensione | Formato | |
---|---|---|---|
Capuzzo Dolcetta_postprint_Invariant-cones_2023.pdf
solo gestori archivio
Note: articolo
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
409.54 kB
Formato
Adobe PDF
|
409.54 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.