Wide spread of millimeter-wave (mmWave) and wireless power transfer (WPT) technologies opens new challenges in terms of characterization of bioelectromagnetic interactions. The objective of this study is to investigate quantitatively the induction of such electromagnetic radiation within cells at 6.78 MHz and 60 GHz respectively. A realistic model of the keratinocyte, which takes into account the complex morphologies and volume fraction of organelles, was developed. The finite element method ( FEM) was used to solve the Laplace's equation under quasi-static approximation. The results show that the power loss density (PLD) within the cellular and subcellular compartments increases with frequency due to diminished shielding effect of the membranes. At 60 GHz and 6.78 MHz, the average power loss density (PLDavg) within the cellular and subcellular organelles is about six and three orders of magnitude higher than that at 1 kHz. Also, in comparison to the background PLDavg within cytoplasm (CP), the intracellular traffic through the nuclear pores (Np) is submitted to three orders of magnitude higher exposure level at 6.78 MHz and 2.5 times higher exposure level at 60 GHz.
Microdosimetry in a realistic keratinocyte cell model at mmWave and HF frequencies / Haider, Z.; Drean, Y. L.; Sauleau, R.; Caramazza, L.; Liberti, M.; Zhadobov, M.. - (2022), pp. 1-4. (Intervento presentato al convegno 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC) tenutosi a Gran Canaria, Spain) [10.23919/AT-AP-RASC54737.2022.9814391].
Microdosimetry in a realistic keratinocyte cell model at mmWave and HF frequencies
Caramazza L.;Liberti M.;Zhadobov M.
2022
Abstract
Wide spread of millimeter-wave (mmWave) and wireless power transfer (WPT) technologies opens new challenges in terms of characterization of bioelectromagnetic interactions. The objective of this study is to investigate quantitatively the induction of such electromagnetic radiation within cells at 6.78 MHz and 60 GHz respectively. A realistic model of the keratinocyte, which takes into account the complex morphologies and volume fraction of organelles, was developed. The finite element method ( FEM) was used to solve the Laplace's equation under quasi-static approximation. The results show that the power loss density (PLD) within the cellular and subcellular compartments increases with frequency due to diminished shielding effect of the membranes. At 60 GHz and 6.78 MHz, the average power loss density (PLDavg) within the cellular and subcellular organelles is about six and three orders of magnitude higher than that at 1 kHz. Also, in comparison to the background PLDavg within cytoplasm (CP), the intracellular traffic through the nuclear pores (Np) is submitted to three orders of magnitude higher exposure level at 6.78 MHz and 2.5 times higher exposure level at 60 GHz.File | Dimensione | Formato | |
---|---|---|---|
Haider_Microdosimetry_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.