In the framework of statistical mechanics the properties of macroscopic systems are deduced starting from the laws of their microscopic dynamics. One of the key assumptions in this procedure is the ergodic property, namely the equivalence between time averages and ensemble averages. This property can be proved only for a limited number of systems; however, as proved by Khinchin (1949), weak forms of it hold even in systems that are not ergodic at the microscopic scale, provided that extensive observables are considered. Here we show in a pedagogical way the validity of the ergodic hypothesis, at a practical level, in the paradigmatic case of a chain of harmonic oscillators. By using analytical results and numerical computations, we provide evidence that this non-chaotic integrable system shows ergodic behavior in the limit of many degrees of freedom. In particular, the Maxwell-Boltzmann distribution turns out to fairly describe the statistics of the single particle velocity. A study of the typical time-scales for relaxation is also provided.

Ergodic observables in non-ergodic systems. The example of the harmonic chain / Baldovin, Marco; Marino, Raffaele; Vulpiani, Angelo. - In: PHYSICA. A. - ISSN 0378-4371. - 630:(2023), pp. 1-9. [10.1016/j.physa.2023.129273]

Ergodic observables in non-ergodic systems. The example of the harmonic chain

Baldovin, Marco
;
Marino, Raffaele;Vulpiani, Angelo
2023

Abstract

In the framework of statistical mechanics the properties of macroscopic systems are deduced starting from the laws of their microscopic dynamics. One of the key assumptions in this procedure is the ergodic property, namely the equivalence between time averages and ensemble averages. This property can be proved only for a limited number of systems; however, as proved by Khinchin (1949), weak forms of it hold even in systems that are not ergodic at the microscopic scale, provided that extensive observables are considered. Here we show in a pedagogical way the validity of the ergodic hypothesis, at a practical level, in the paradigmatic case of a chain of harmonic oscillators. By using analytical results and numerical computations, we provide evidence that this non-chaotic integrable system shows ergodic behavior in the limit of many degrees of freedom. In particular, the Maxwell-Boltzmann distribution turns out to fairly describe the statistics of the single particle velocity. A study of the typical time-scales for relaxation is also provided.
2023
ergodicity; thermalization; harmonic oscillator chain; integrability; time scales; observable
01 Pubblicazione su rivista::01a Articolo in rivista
Ergodic observables in non-ergodic systems. The example of the harmonic chain / Baldovin, Marco; Marino, Raffaele; Vulpiani, Angelo. - In: PHYSICA. A. - ISSN 0378-4371. - 630:(2023), pp. 1-9. [10.1016/j.physa.2023.129273]
File allegati a questo prodotto
File Dimensione Formato  
Baldovin_Ergodic-observables_2024.pdf

solo gestori archivio

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 561.6 kB
Formato Adobe PDF
561.6 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1702423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact