The Esca complex is a grapevine trunk disease that significantly threatens modern viticulture. The lack of effective control strategies and the intricacy of Esca disease manifestation render essential the identification of affected plants before symptoms become evident to the naked eye. This study applies Convolutional Neural Networks (CNNs) to distinguish, at the pixel level, between healthy, asymptomatic and symptomatic grapevine leaves of a Tempranillo red-berried cultivar using Hyperspectral imaging (HSI) in the 900–1700 nm spectral range. We show that a 1D CNN performs semantic image segmentation (SiS) with higher accuracy than PLS-DA, one of HSI data’s most widely used classification algorithms.

Convolutional neural networks for the detection of esca disease complex in asymptomatic grapevine leaves / Carraro, A.; Saurio, G.; Lopez-Maestresalas, A.; Scardapane, S.; Marinello, F.. - 14365:(2024), pp. 418-429. (Intervento presentato al convegno Proceedings of the 22nd International Conference on Image Analysis and Processing, ICIAP 2023 tenutosi a Udine; Italy) [10.1007/978-3-031-51023-6_35].

Convolutional neural networks for the detection of esca disease complex in asymptomatic grapevine leaves

Saurio G.;Scardapane S.;
2024

Abstract

The Esca complex is a grapevine trunk disease that significantly threatens modern viticulture. The lack of effective control strategies and the intricacy of Esca disease manifestation render essential the identification of affected plants before symptoms become evident to the naked eye. This study applies Convolutional Neural Networks (CNNs) to distinguish, at the pixel level, between healthy, asymptomatic and symptomatic grapevine leaves of a Tempranillo red-berried cultivar using Hyperspectral imaging (HSI) in the 900–1700 nm spectral range. We show that a 1D CNN performs semantic image segmentation (SiS) with higher accuracy than PLS-DA, one of HSI data’s most widely used classification algorithms.
2024
Proceedings of the 22nd International Conference on Image Analysis and Processing, ICIAP 2023
Convolutional Neural Networks; Esca complex; Hyperspectral imaging; Partial Least Squares Discriminant Analysis
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Convolutional neural networks for the detection of esca disease complex in asymptomatic grapevine leaves / Carraro, A.; Saurio, G.; Lopez-Maestresalas, A.; Scardapane, S.; Marinello, F.. - 14365:(2024), pp. 418-429. (Intervento presentato al convegno Proceedings of the 22nd International Conference on Image Analysis and Processing, ICIAP 2023 tenutosi a Udine; Italy) [10.1007/978-3-031-51023-6_35].
File allegati a questo prodotto
File Dimensione Formato  
Carraro_Convolutional Neural Networks_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.42 MB
Formato Adobe PDF
5.42 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1702192
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact