Subgraph-enhanced graph neural networks (SGNN) can increase the expressive power of the standard message-passing framework. This model family represents each graph as a collection of subgraphs, generally extracted by random sampling or with hand-crafted heuristics. Our key observation is that by selecting "meaningful" subgraphs, besides improving the expressivity of a GNN, it is also possible to obtain interpretable results. For this purpose, we introduce a novel framework that jointly predicts the class of the graph and a set of explanatory sparse subgraphs, which can be analyzed to understand the decision process of the classifier. The subgraphs produced by our framework allow to achieve comparable performance in terms of accuracy, with the additional benefit of providing explanations.

Combining stochastic explainers and subgraph neural networks can increase expressivity and interpretability / Spinelli, Indro; Guerra, Michele; Bianchi, Filippo Maria; Scardapane, Simone. - (2023), pp. 229-234. (Intervento presentato al convegno European Symposium on Artificial Neural Networks tenutosi a Bruges; Belgium) [10.14428/esann/2023.es2023-13].

Combining stochastic explainers and subgraph neural networks can increase expressivity and interpretability

Spinelli, Indro
Primo
;
Scardapane, Simone
Ultimo
2023

Abstract

Subgraph-enhanced graph neural networks (SGNN) can increase the expressive power of the standard message-passing framework. This model family represents each graph as a collection of subgraphs, generally extracted by random sampling or with hand-crafted heuristics. Our key observation is that by selecting "meaningful" subgraphs, besides improving the expressivity of a GNN, it is also possible to obtain interpretable results. For this purpose, we introduce a novel framework that jointly predicts the class of the graph and a set of explanatory sparse subgraphs, which can be analyzed to understand the decision process of the classifier. The subgraphs produced by our framework allow to achieve comparable performance in terms of accuracy, with the additional benefit of providing explanations.
2023
European Symposium on Artificial Neural Networks
artificial intelligence; explainability; graph neural networks
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Combining stochastic explainers and subgraph neural networks can increase expressivity and interpretability / Spinelli, Indro; Guerra, Michele; Bianchi, Filippo Maria; Scardapane, Simone. - (2023), pp. 229-234. (Intervento presentato al convegno European Symposium on Artificial Neural Networks tenutosi a Bruges; Belgium) [10.14428/esann/2023.es2023-13].
File allegati a questo prodotto
File Dimensione Formato  
Spinelli_Combining_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF
Spinelli_Frontespizio_Combining_2023.pdf

solo gestori archivio

Note: Frontespizio
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 230.56 kB
Formato Adobe PDF
230.56 kB Adobe PDF   Contatta l'autore
Spinelli_Indice_Combining_2023.pdf

solo gestori archivio

Note: Indice
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1702188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact