Continual Self-Supervised Learning (CSSL) is a promising approach for intelligent systems that address the challenge of learning in scenarios with limited data, mirroring real-world conditions. However, CSSL remains relatively unexplored, especially in the context of Earth Observation (EO). In this paper, we investigate the problem of CSSL in remote sensing (RS), focusing on leveraging satellite and aerial imagery to develop systems that can continuously adapt and learn with minimal human intervention in data preparation. Specifically, we tackle the task of semantic segmentation, which has diverse applications in RS. Building upon existing work in the domain, we propose a novel algorithm called Continual Barlow Twins with Embedding Regularizer (CBT-ER). To evaluate the effectiveness of our approach, we conduct experiments on three heterogeneous datasets (i.e. Potsdam, DFC2022, SEN12MS). To ensure robust experimentation, we vary the availability of data labels (10%, 100%) and compare our approach against different baselines, showing encouraging performance.

Continual self-supervised learning in Earth observation with embedding regularization / Moieez, Hamna; Marsocci, Valerio; Scardapane, Simone. - (2023), pp. 5029-5032. (Intervento presentato al convegno 2023 IEEE International Geoscience and Remote Sensing Symposium tenutosi a Pasadena; US) [10.1109/igarss52108.2023.10283121].

Continual self-supervised learning in Earth observation with embedding regularization

Moieez, Hamna;Marsocci, Valerio
;
Scardapane, Simone
2023

Abstract

Continual Self-Supervised Learning (CSSL) is a promising approach for intelligent systems that address the challenge of learning in scenarios with limited data, mirroring real-world conditions. However, CSSL remains relatively unexplored, especially in the context of Earth Observation (EO). In this paper, we investigate the problem of CSSL in remote sensing (RS), focusing on leveraging satellite and aerial imagery to develop systems that can continuously adapt and learn with minimal human intervention in data preparation. Specifically, we tackle the task of semantic segmentation, which has diverse applications in RS. Building upon existing work in the domain, we propose a novel algorithm called Continual Barlow Twins with Embedding Regularizer (CBT-ER). To evaluate the effectiveness of our approach, we conduct experiments on three heterogeneous datasets (i.e. Potsdam, DFC2022, SEN12MS). To ensure robust experimentation, we vary the availability of data labels (10%, 100%) and compare our approach against different baselines, showing encouraging performance.
2023
2023 IEEE International Geoscience and Remote Sensing Symposium
continual learning; self-supervised learning; semantic segmentation; multi-modal dataset
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Continual self-supervised learning in Earth observation with embedding regularization / Moieez, Hamna; Marsocci, Valerio; Scardapane, Simone. - (2023), pp. 5029-5032. (Intervento presentato al convegno 2023 IEEE International Geoscience and Remote Sensing Symposium tenutosi a Pasadena; US) [10.1109/igarss52108.2023.10283121].
File allegati a questo prodotto
File Dimensione Formato  
Moieez_Continual_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF   Contatta l'autore
Moieez_Continual_Frontespizio_2023.pdf

solo gestori archivio

Note: Frontespizio Atto Convegno
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 980.13 kB
Formato Adobe PDF
980.13 kB Adobe PDF   Contatta l'autore
Moieez_Continual_Indice_2023.pdf

solo gestori archivio

Note: Indice Atto Convegno
Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1702059
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact