After revisiting the properties of generalized trigonometric functions, i.e., the trigonometric function linked to the planar (Fermat) curve $x^p+y^p=1$, using the tool of Keplerian trigonometry, introduced in (Gambini et al.: Monatsh. Math. 195, 55–72, 2021), we present the extension to this class of functions of the Wallis product, discovering connections with the representations of ordinary trigonometric functions by means of infinite products.

The Wallis Products for Fermat Curves / Gambini, Alessandro; Nicoletti, Giorgio; Ritelli, Daniele. - In: VIETNAM JOURNAL OF MATHEMATICS. - ISSN 2305-221X. - (2023), pp. 1-16. [10.1007/s10013-023-00617-3]

The Wallis Products for Fermat Curves

Gambini, Alessandro;
2023

Abstract

After revisiting the properties of generalized trigonometric functions, i.e., the trigonometric function linked to the planar (Fermat) curve $x^p+y^p=1$, using the tool of Keplerian trigonometry, introduced in (Gambini et al.: Monatsh. Math. 195, 55–72, 2021), we present the extension to this class of functions of the Wallis product, discovering connections with the representations of ordinary trigonometric functions by means of infinite products.
2023
Generalized trigonometric functions, Keplerian maps, Eulerian functions, Infinite products, Wallis product
01 Pubblicazione su rivista::01a Articolo in rivista
The Wallis Products for Fermat Curves / Gambini, Alessandro; Nicoletti, Giorgio; Ritelli, Daniele. - In: VIETNAM JOURNAL OF MATHEMATICS. - ISSN 2305-221X. - (2023), pp. 1-16. [10.1007/s10013-023-00617-3]
File allegati a questo prodotto
File Dimensione Formato  
Gambini_The Wallis Products_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 528.05 kB
Formato Adobe PDF
528.05 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1702057
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact