After revisiting the properties of generalized trigonometric functions, i.e., the trigonometric function linked to the planar (Fermat) curve $x^p+y^p=1$, using the tool of Keplerian trigonometry, introduced in (Gambini et al.: Monatsh. Math. 195, 55–72, 2021), we present the extension to this class of functions of the Wallis product, discovering connections with the representations of ordinary trigonometric functions by means of infinite products.
The Wallis Products for Fermat Curves / Gambini, Alessandro; Nicoletti, Giorgio; Ritelli, Daniele. - In: VIETNAM JOURNAL OF MATHEMATICS. - ISSN 2305-221X. - (2023), pp. 1-16. [10.1007/s10013-023-00617-3]
The Wallis Products for Fermat Curves
Gambini, Alessandro;
2023
Abstract
After revisiting the properties of generalized trigonometric functions, i.e., the trigonometric function linked to the planar (Fermat) curve $x^p+y^p=1$, using the tool of Keplerian trigonometry, introduced in (Gambini et al.: Monatsh. Math. 195, 55–72, 2021), we present the extension to this class of functions of the Wallis product, discovering connections with the representations of ordinary trigonometric functions by means of infinite products.File | Dimensione | Formato | |
---|---|---|---|
Gambini_The Wallis Products_2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
528.05 kB
Formato
Adobe PDF
|
528.05 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.