The effect of low-speed, circular synthetic jets (SJ) on the turbulent transition of a laminar boundary layer is studied through direct numerical simulations. The SJ capability in fixating the streamwise location of transition onset is analyzed in terms of its operation parameters (reduced frequency F+ and momentum coefficient C mu). The effect of free-stream turbulence (FST) on the near-wall vortical structures generated by the synthetic jet is analyzed as well, to mimic the actual operation of the control system. Velocity spectra, phase portraits, and dynamic mode decomposition allow us to investigate flow unsteadiness and transition to a chaotic state. In most of the investigated cases, SJs successfully promote transition, as the result of varicose-symmetric hairpin-like vortices generated at the jet exits. In particular, it is found that increasing the momentum coefficient always reduces the size of the laminar region; a non-monotonic behavior of the laminar fetch is noted as the reduced frequency is increased, suggesting the existence of an optimal frequency value. Combination of FST and SJ actuation results in spanwise-asymmetric vortical structures, with little difference in the location of the transition onset as compared to the previous case. The present analysis can be used to gather information on the practical implementation of low-speed SJ actuators as active turbulators.

Boundary layer transition induced by low-speed synthetic jets / Palumbo, Andrea; Semeraro, Onofrio; Robinet, Jean-Christophe; de Luca, Luigi. - In: PHYSICS OF FLUIDS. - ISSN 1070-6631. - 34:12(2022). [10.1063/5.0128798]

Boundary layer transition induced by low-speed synthetic jets

Palumbo, Andrea
Primo
;
2022

Abstract

The effect of low-speed, circular synthetic jets (SJ) on the turbulent transition of a laminar boundary layer is studied through direct numerical simulations. The SJ capability in fixating the streamwise location of transition onset is analyzed in terms of its operation parameters (reduced frequency F+ and momentum coefficient C mu). The effect of free-stream turbulence (FST) on the near-wall vortical structures generated by the synthetic jet is analyzed as well, to mimic the actual operation of the control system. Velocity spectra, phase portraits, and dynamic mode decomposition allow us to investigate flow unsteadiness and transition to a chaotic state. In most of the investigated cases, SJs successfully promote transition, as the result of varicose-symmetric hairpin-like vortices generated at the jet exits. In particular, it is found that increasing the momentum coefficient always reduces the size of the laminar region; a non-monotonic behavior of the laminar fetch is noted as the reduced frequency is increased, suggesting the existence of an optimal frequency value. Combination of FST and SJ actuation results in spanwise-asymmetric vortical structures, with little difference in the location of the transition onset as compared to the previous case. The present analysis can be used to gather information on the practical implementation of low-speed SJ actuators as active turbulators.
2022
vortex generator; computational fluid dynamics; flow control; fluid instabilities; fluid jets; boundary layer flow
01 Pubblicazione su rivista::01a Articolo in rivista
Boundary layer transition induced by low-speed synthetic jets / Palumbo, Andrea; Semeraro, Onofrio; Robinet, Jean-Christophe; de Luca, Luigi. - In: PHYSICS OF FLUIDS. - ISSN 1070-6631. - 34:12(2022). [10.1063/5.0128798]
File allegati a questo prodotto
File Dimensione Formato  
Palumbo_Boundary-layer_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.93 MB
Formato Adobe PDF
5.93 MB Adobe PDF   Contatta l'autore
Palumbo_Preprint_Boundary_2022.pdf

accesso aperto

Note: https://doi.org/10.1063/5.0128798
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.58 MB
Formato Adobe PDF
5.58 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1702018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact