Few-layer graphene possesses low-energy carriers that behave as massive Fermions, exhibiting intriguing properties in both transport and light scattering experiments. Lowering the excitation energy of resonance Raman spectroscopy down to 1.17 eV, we target these massive quasiparticles in the split bands close to the K point. The low excitation energy weakens some of the Raman processes that are resonant in the visible, and induces a clearer frequency-separation of the substructures of the resonance 2D peak in bi- and trilayer samples. We follow the excitation-energy dependence of the intensity of each substructure, and comparing experimental measurements on bilayer graphene with ab initio theoretical calculations, we trace back such modifications on the joint effects of probing the electronic dispersion close to the band splitting and enhancement of electron-phonon matrix elements.

Infrared resonance Raman of Bilayer graphene. Signatures of massive Fermions and band structure on the 2D peak / Graziotto, Lorenzo; Macheda, Francesco; Venanzi, Tommaso; Marchese, Guglielmo; Sotgiu, Simone; Ouaj, Taoufiq; Stellino, Elena; Fasolato, Claudia; Postorino, Paolo; Metzelaars, Marvin; Kögerler, Paul; Beschoten, Bernd; Calandra, Matteo; Ortolani, Michele; Stampfer, Christoph; Mauri, Francesco; Baldassarre, Leonetta. - In: NANO LETTERS. - ISSN 1530-6984. - 24:(2024), pp. 1867-1873. [10.1021/acs.nanolett.3c03502]

Infrared resonance Raman of Bilayer graphene. Signatures of massive Fermions and band structure on the 2D peak

Francesco Macheda;Tommaso Venanzi;Guglielmo Marchese;Simone Sotgiu;Elena Stellino;Claudia Fasolato;Paolo Postorino;Michele Ortolani;Francesco Mauri;Leonetta Baldassarre
2024

Abstract

Few-layer graphene possesses low-energy carriers that behave as massive Fermions, exhibiting intriguing properties in both transport and light scattering experiments. Lowering the excitation energy of resonance Raman spectroscopy down to 1.17 eV, we target these massive quasiparticles in the split bands close to the K point. The low excitation energy weakens some of the Raman processes that are resonant in the visible, and induces a clearer frequency-separation of the substructures of the resonance 2D peak in bi- and trilayer samples. We follow the excitation-energy dependence of the intensity of each substructure, and comparing experimental measurements on bilayer graphene with ab initio theoretical calculations, we trace back such modifications on the joint effects of probing the electronic dispersion close to the band splitting and enhancement of electron-phonon matrix elements.
2024
Raman; electron−phonon; graphene; massive Dirac Fermions; transport, ab initio
01 Pubblicazione su rivista::01a Articolo in rivista
Infrared resonance Raman of Bilayer graphene. Signatures of massive Fermions and band structure on the 2D peak / Graziotto, Lorenzo; Macheda, Francesco; Venanzi, Tommaso; Marchese, Guglielmo; Sotgiu, Simone; Ouaj, Taoufiq; Stellino, Elena; Fasolato, Claudia; Postorino, Paolo; Metzelaars, Marvin; Kögerler, Paul; Beschoten, Bernd; Calandra, Matteo; Ortolani, Michele; Stampfer, Christoph; Mauri, Francesco; Baldassarre, Leonetta. - In: NANO LETTERS. - ISSN 1530-6984. - 24:(2024), pp. 1867-1873. [10.1021/acs.nanolett.3c03502]
File allegati a questo prodotto
File Dimensione Formato  
Graziotto_Infrared-resonance-raman_2024.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1701121
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact