Background: Evaluating oscillometry parameters separately for the inspiratory and expiratory breath phases and their within-breath differences can help to identify exercise-induced bronchoconstriction (EIB) in pediatric outpatients disclosing exercise-induced symptoms (EIS). Aims: To assess the response in impedance parameters following an exercise challenge in patients reporting EIS. Methods: Sixty-eight patients reporting EIS (34 asthmatics and 34 suspected of asthma, age mean = 10.8 years, range = 6.0-16.0) underwent an incremental treadmill exercise test. Spirometry was performed at baseline and 1, 5-, 10-, 15-, and 20-min post exercise. Oscillometry was performed at baseline and at 3- and 18-min post exercise. Bronchodilator response to 200 µg albuterol was then assessed. EIB was defined as a forced expiratory volume in 1 s (FEV1) fall ≥10% from baseline. Expiratory and inspiratory resistance (Rrs) and reactance (Xrs), their z-score (Ducharme et al. 2022), and their mean within-breath differences (ΔRrs = Rrsexp-Rrsinsp, ΔXrs = Xrsexp-Xrsinsp) were calculated. Receiver operating characteristic (ROC) curves and their areas (AUCs) were used to evaluate impedance parameters' performances in classifying EIB. Results: Asthmatic patients developed EIB more frequently than those suspected of asthma [18/34 (52.9%) vs. 2/34 (5.9%), p < 0.001]. In the 20 subjects with EIB, Rrsinsp, Rrsexp, Xrsinsp, and Xrsexp peaked early (3'), and remained steady except for Xrsinsp, which recovered faster afterward. ΔXrs widened 18 min following the exercise and reversed sharply after bronchodilation (BD) (-1.81 ± 1.60 vs. -0.52 ± 0.80 cmH2O × s/L, p < 0.001). Cutoffs for EIB leading to the highest AUCs were a rise of 0.41 in z-score Rrsinsp (Se: 90.0%, Sp: 66.7%), and a fall of -0.64 in z-score Xrsinsp (Se: 90.0%, Sp: 75.0%). Accepting as having "positive" postexercise oscillometry changes those subjects who had both z-scores beyond respective cutoffs, sensitivity for EIB was 90.0% (18/20) and specificity, 83.3% (40/48). Conclusion: Oscillometry parameters and their within-breath differences changed markedly in pediatric patients presenting EIB and were restored after the bronchodilator. Strong agreement between z-scores of inspiratory oscillometry parameters and spirometry supports their clinical utility, though larger studies are required to validate these findings in a broader population.

Within-breath oscillometry for identifying exercise-induced bronchoconstriction in pediatric patients reporting symptoms with exercise / Barreto, Mario; Veneroni, Chiara; Caiulo, Mariaclaudia; Evangelisti, Melania; Pompilio, Pasquale Pio; Mazzuca, Maria Cristina; Raponi, Giorgia; Pagani, Jacopo; Parisi, Pasquale. - In: FRONTIERS IN PEDIATRICS. - ISSN 2296-2360. - 11:(2024). [10.3389/fped.2023.1324413]

Within-breath oscillometry for identifying exercise-induced bronchoconstriction in pediatric patients reporting symptoms with exercise

Barreto, Mario
Writing – Original Draft Preparation
;
Caiulo, Mariaclaudia;Evangelisti, Melania;Mazzuca, Maria Cristina;Raponi, Giorgia;Pagani, Jacopo;Parisi, Pasquale
Writing – Review & Editing
2024

Abstract

Background: Evaluating oscillometry parameters separately for the inspiratory and expiratory breath phases and their within-breath differences can help to identify exercise-induced bronchoconstriction (EIB) in pediatric outpatients disclosing exercise-induced symptoms (EIS). Aims: To assess the response in impedance parameters following an exercise challenge in patients reporting EIS. Methods: Sixty-eight patients reporting EIS (34 asthmatics and 34 suspected of asthma, age mean = 10.8 years, range = 6.0-16.0) underwent an incremental treadmill exercise test. Spirometry was performed at baseline and 1, 5-, 10-, 15-, and 20-min post exercise. Oscillometry was performed at baseline and at 3- and 18-min post exercise. Bronchodilator response to 200 µg albuterol was then assessed. EIB was defined as a forced expiratory volume in 1 s (FEV1) fall ≥10% from baseline. Expiratory and inspiratory resistance (Rrs) and reactance (Xrs), their z-score (Ducharme et al. 2022), and their mean within-breath differences (ΔRrs = Rrsexp-Rrsinsp, ΔXrs = Xrsexp-Xrsinsp) were calculated. Receiver operating characteristic (ROC) curves and their areas (AUCs) were used to evaluate impedance parameters' performances in classifying EIB. Results: Asthmatic patients developed EIB more frequently than those suspected of asthma [18/34 (52.9%) vs. 2/34 (5.9%), p < 0.001]. In the 20 subjects with EIB, Rrsinsp, Rrsexp, Xrsinsp, and Xrsexp peaked early (3'), and remained steady except for Xrsinsp, which recovered faster afterward. ΔXrs widened 18 min following the exercise and reversed sharply after bronchodilation (BD) (-1.81 ± 1.60 vs. -0.52 ± 0.80 cmH2O × s/L, p < 0.001). Cutoffs for EIB leading to the highest AUCs were a rise of 0.41 in z-score Rrsinsp (Se: 90.0%, Sp: 66.7%), and a fall of -0.64 in z-score Xrsinsp (Se: 90.0%, Sp: 75.0%). Accepting as having "positive" postexercise oscillometry changes those subjects who had both z-scores beyond respective cutoffs, sensitivity for EIB was 90.0% (18/20) and specificity, 83.3% (40/48). Conclusion: Oscillometry parameters and their within-breath differences changed markedly in pediatric patients presenting EIB and were restored after the bronchodilator. Strong agreement between z-scores of inspiratory oscillometry parameters and spirometry supports their clinical utility, though larger studies are required to validate these findings in a broader population.
2024
asthma; exercise-induced bronchoconstriction; exercise-induced symptoms
01 Pubblicazione su rivista::01a Articolo in rivista
Within-breath oscillometry for identifying exercise-induced bronchoconstriction in pediatric patients reporting symptoms with exercise / Barreto, Mario; Veneroni, Chiara; Caiulo, Mariaclaudia; Evangelisti, Melania; Pompilio, Pasquale Pio; Mazzuca, Maria Cristina; Raponi, Giorgia; Pagani, Jacopo; Parisi, Pasquale. - In: FRONTIERS IN PEDIATRICS. - ISSN 2296-2360. - 11:(2024). [10.3389/fped.2023.1324413]
File allegati a questo prodotto
File Dimensione Formato  
Barreto_Within-breath-oscillometry_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 6.08 MB
Formato Adobe PDF
6.08 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1700779
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact