The Gaussian distribution has ever been the most popular and usable device in the field of statistics. Even in the context of penalised complexity (PC) priors, the normal density has a particular meaning, especially because we can consider it as a base model which could be extended both in terms of tail thickness and skewness. We derive the numerical PC prior for the shape parameter of the skew-normal density and the analytical PC prior for the degrees of freedom of the t-distribution. We also perform an approximation of the Kullback-Leibler divergence (KLD) in the the skew-normal model

Penalising the complexity of extensions of the Gaussian distribution / Liseo, Brunero; Battagliese, Diego. - (2020), pp. 691-696.

Penalising the complexity of extensions of the Gaussian distribution

Liseo, Brunero
Secondo
;
Battagliese Diego
Primo
2020

Abstract

The Gaussian distribution has ever been the most popular and usable device in the field of statistics. Even in the context of penalised complexity (PC) priors, the normal density has a particular meaning, especially because we can consider it as a base model which could be extended both in terms of tail thickness and skewness. We derive the numerical PC prior for the shape parameter of the skew-normal density and the analytical PC prior for the degrees of freedom of the t-distribution. We also perform an approximation of the Kullback-Leibler divergence (KLD) in the the skew-normal model
2020
SIS 2020 - Book of Short Papers
9788891910776
PC priors; Skew-normal distribution; Student t-distribution; KullbackLeibler divergence
02 Pubblicazione su volume::02a Capitolo o Articolo
Penalising the complexity of extensions of the Gaussian distribution / Liseo, Brunero; Battagliese, Diego. - (2020), pp. 691-696.
File allegati a questo prodotto
File Dimensione Formato  
Battagliese_Penalising-complexity_2020.pdf

accesso aperto

Note: pdf
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 140.19 kB
Formato Adobe PDF
140.19 kB Adobe PDF
Pearson-SIS-2020-atti-convegno.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 418.59 kB
Formato Adobe PDF
418.59 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1700477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact