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Abstract The Gaussian distribution has ever been the most popular and usable de-
vice in the field of statistics. Even in the context of penalised complexity (PC) priors,
the normal density has a particular meaning, especially because we can consider it
as a base model which could be extended both in terms of tail thickness and skew-
ness. We derive the numerical PC prior for the shape parameter of the skew-normal
density and the analytical PC prior for the degrees of freedom of the t-distribution.
We also perform an approximation of the Kullback-Leibler divergence (KLD) in the
the skew-normal model.
Abstract La distribuzione normale ha sempre ricoperto un ruolo fondamentale in
statistica. Anche nel caso delle PC prior essa riveste un ruolo importante, giacché
può essere estesa sia per via di una componente di curtosi sia per una di asimmetria.
Qui deriviamo la PC prior numerica per il parametro di forma di una normale
asimmetrica e l’espressione analitica della PC prior per i gradi di libertà di una t
di Student. Inoltre, proponiamo un’approssimazione della KLD quando l’estensione
è in termini di asimmetria.
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1 Introduction

In many practical statistical works, datasets reveal departures from symmetry, hence
something more flexible than the normal model is needed. The skew-normal dis-
tribution [1] extends the normal one by introducing in the cumulative distribution
function a perturbation parameter that accounts for skewness. The probability den-
sity function of a scalar skew-normal random variable X is of the form

f (x; µ,σ ,λ ) =
2
σ

φ

(x−µ

σ

)
Φ

(
λ

x−µ

σ

)
, x ∈ R, λ ∈ (−∞,+∞), (1)

where φ(·) and Φ(·) are the standard Gaussian pdf and CDF respectively . Also
the t-distribution extends the Gaussian in terms of robustness. Penalised complexity
priors have been proposed in [4] and are based on the KLD between the simpler
and the complex models. For a review of the principles behind the construction of a
Penalised Complexity prior, see [4].

2 PC prior for the shape parameter in the skew-normal model

We can look at the skew-normal model as a flexible version of the normal distribu-
tion, where the latter represents the base model. In fact, for a particular value of λ ,
i.e. λ = 0, the density in (1) boils down to the normal density as Φ(0) = 1/2. An
important feature of the PC prior for λ is the invariance with respect to the location
and scale parameters.

Proposition 1 (Invariance wrt location-scale) Let X1 ∼ SN(µ,σ2,λ ) and Y1 ∼
N(µ,σ2) be the skew-normal and normal densities respectively, with the same lo-
cation and scale parameters. Furthermore, let X2 ∼ SN(0,1,δ ) and Y2 ∼ N(0,1)
be the standard versions of the above densities. The Kullback-Leibler divergence
between X1 and Y1 does not differ from the one between X2 and Y2.∫
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can be written as∫
T
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dt, (3)

where t = x−µ

σ
and dt = dx

σ
.

In other words, the resulting PC prior for λ does not depend on µ and σ . Suppose
X ∼ SN(0,1,λ ), the distance in terms of δ is

d(δ ) =
√

2KLD(δ ) =

√
2
∫

X
2 φ(x) Φ{λ (δ )x} log[2 Φ{λ (δ )x}] dx, (4)
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where δ = δ (λ ) = λ√
1+λ 2

, δ ∈ (−1,1). The distance function in (4) is symmetric

around 0, as well as the KLD. The minimum is at 0, where d(0) = 0, while the max-
imum is attained at the boundary values. The distance is exponentially distributed.
We must be careful in making the change of variable to get the prior for δ , because
we have to handle each monotone curve separately. In particular, the function d(δ )
is monotone on (−1,0) and on (0,1). Then, the pdf for δ is

π(δ ) =

∑
2
i=1 π{di(δ )}

∣∣∣∣∣ ∂di(δ )
∂δ

∣∣∣∣∣ if d(δ ) ∈Θ

0 otherwise,

(5)

where Θ = (0,∞) and we make use of Leibniz’s Rule to numerically compute the
derivative of the distance. The PC prior for δ is

π
PC(δ |θ) = θ

2
e−θ
√

2KLD(δ ) |KLD′(δ )|√
2KLD(δ )

, (6)

where θ regulates the shrinkage of the prior mass towards the base model. The
higher θ the more the shrinkage.

2.1 Approximation of the KLD

The prior above has not a closed form. To this aim we perform an approximation of
the KLD based on the moments of the skew-normal distribution. The approximation
works pretty good, but not so good on the tails, especially when the parameter θ is
small as the probability mass spreads out at the boundaries. Here, we approximate
the logarithm of the normal CDF by means of a quintic polynomial regression. The
amazing fact is that the intercept α gets closer and closer to − log2 as we increase
the degree of the polynomial regression, and this is crucial to have the KLD(λ =
0) = 0. It is not convenient to consider more moments as the quintic approximation
seems to work very well. Given Y ∼ SN(λ ), the KLD can be written as

EY [log{2Φ(λY )}] = log2+

EY (α +βλY +ξ λ
2Y 2 + γλ

3Y 3 + ελ
4Y 4 +ηλ

5Y 5), (7)

where α , β , ξ , γ , ε and η are the coefficients of the polynomial regression. So, the
KLD can be approximated by the first five moments of the skew-normal distribution
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In this way, we would be able to derive an analytical PC prior for λ or δ .

2.2 Bayesian inference for the skew-normal model

We check out the frequentist properties of our PC prior and we compare it to the Jef-
freys’ prior in [3], in order to see if there could be a certain value of the parameter
θ that can be interpreted as objective. We perform a simulation study for different
values of the shape parameter, for various sample sizes and for several values of the
shrinkage parameter, θ . For any combination we calculate the MSE of the posterior
median, the coverage probabilities and the Bayes factor. The posterior median is a
reasonable choice, especially for samples where the MLE is infinite, because this
entails the non finiteness of the posterior mean, see [2]. The simulation study con-
firms that large values of θ are quite useless, in the sense that they produce more
biased estimates, especially in samples where the true λ 6= 0. A large value of θ

works well only when the true λ = 0. Anyhow, the gap with respect to a small value
of θ vanishes for large sample sizes. In the current work we are interested to find a
particular θ that can be interpreted as objective. The simulation study shows that for
θ approximately equal to 0.5, the PC prior approaches the estimates produced by
the Jeffreys’ prior. So, if we had to choose a noninformative value for θ we would
say approximately 0.5.

2.3 Bayesian hypothesis testing

We use our PC prior for a Bayesian hypotheses test and we compare it to the Jef-
freys’ prior in [3], namely a t(λ |µ = 0,σ = π/2,ν = 1/2). The proposition stated
in Sect. 2 is very important as it allows us to write the Bayes factor in a simplified
manner, i.e. without considering the joint prior distribution over the location and
scale parameters. The Bayes factor for testing

H0 : λ = 0 vs H1 : λ 6= 0

can be written as

BF01(x) =
∏

n
i=1 2φ(xi)Φ(λxi)|λ=0∫

∞

−∞ ∏
n
i=1 2φ(xi)Φ(λxi)πPC(λ |θ)dλ

. (9)
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We use a uniform importance distribution. Indeed by using a standard Monte Carlo
we would draw directly from the PC prior for λ and consequently we could obtain
samples that produce negligible values of the likelihood function, for instance if the
parameter θ is small and the asymmetry is close to 0. However, choices of small or
large θ are suboptimal, in terms of convergence of the Bayes factor towards the true
model. If we draw from a PC prior with a parameter θ too small, it is more likely
to get extreme values of λ . Then, the marginal likelihood will be close to 0, as long
as λ and xi will have opposite signs. Suppose to draw values of λ from a PC prior
with θ → 0, then for a generic xi

if


λ → ∞

{
xi is positive =⇒ BF01 ≈ 0.5
xi is negative =⇒ BF01 ≈ ∞

λ →−∞

{
xi is positive =⇒ BF01 ≈ ∞

xi is negative =⇒ BF01 ≈ 0.5

.

On the other hand, the Bayes factor gives no evidence for the true model when the
PC prior has a large θ . It doesn’t matter what the true model is, and for θ → ∞ it
will be exactly equal to 1. For θ → ∞ the PC prior becomes a Dirac centered at 0.
Then

BF01(x) =
f (x|λ )|λ=0∫

∞

−∞
f (x|λ )I{λ=0}dλ

= 1, (10)

where I{λ=0} denotes the Dirac distribution and f (x|λ ) is the likelihood function.
Simulations seem to favor a θ = 2. The comparison with the Jeffreys’ prior encour-
ages the use of our prior.

3 PC prior for the degrees of freedom of the t-distribution

For the Gaussian base model, the Kullback-Leibler divergence can be resorted in
terms of entropy and second moment of the more complex model. We use the fol-
lowing result

Theorem 1 (Alternative KLD for the Gaussian base model) Suppose to have a
standard normal variate whose density function is f , and a random variable, Y ,
with a more flexible distribution, g. Then, the KLD between any model that is built
up by adding a component to the standard normal base model and the standard
normal distribution itself can be expressed as

KLD(g‖ f ) =−H(Y )+
1
2
{
E(Y 2)+ log(2π)

}
, (11)

where H(·) stands for the entropy.

Proof.
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KLD(g‖ f ) =
∫

g log
(

g
f

)
dy

=
∫

g logg dy−
∫

g log
{

1√
2π

exp
(
−1

2
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)}

dy

=−H(Y )−
{
−1

2

∫
y2g dy+ log

(
1√
2π

)}
=−H(Y )+

1
2
E(Y 2)+ log(

√
2π).

ut

We exploit the theorem above to derive the PC prior for the degrees of freedom,
v, of a t-distribution. The base model for the t-distribution is the Gaussian, which
occurs when ν = ∞. In [4] there is an approximation of the KLD, whilst Theorem 1
allows us to derive an analytical expression for the KLD and consequently for the
PC prior. In addition, once again the prior is invariant with respect to the location-
scale structure. Therefore

KLD(ν) =−ν +1
2

{
Ψ

(
ν +1

2

)
−Ψ

(
ν

2

)}
− log

{√
ν B

(
ν

2
,

1
2

)}
+

1
2

ν

ν−2
− log

(
1√
2π

)
, (12)

where Ψ is the digamma function and B is the beta function.
The resulting prior is defined only for ν > 2 since the second moment of the Student
t-distribution exists only for more than two degrees of freedom. Then

π(ν)= θe−θ
√

A(ν)

∣∣∣ 1
4

{
− 2

ν
− 4

(ν−2)2 +(ν +1)Ψ (1)
(

ν

2

)
− (ν +1)Ψ (1)

(
ν+1

2

)}∣∣∣√
A(ν)

,

(13)

where A(ν) = 2KLD(ν) and Ψ (1) is the trigamma function.
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