It is widely recognized that the posterior parietal cortex (PPC) plays a role in active exploration with eye movements, arm reaching, and hand grasping. Whether this role is causal in nature is largely unresolved. One region of the PPC appears dedicated to the control of saccadic eye movement-lateral intraparietal (LIP) area. This area LIP possesses direct projections to well-established oculomotor centers and contains neurons with movement-related activity. In this study, we tested whether these neurons are implicated in saccade initiation and production. The movement-related activity of LIP neurons was tested by recording these neurons while monkeys performed a countermanding task. We found that LIP neuronal activity is not different before the execution or the cancelation of commanded saccades and thereby is not sufficient for the initiation and production of saccades. Consistent with the evolutionarily late emergence of the PPC, this finding relegates the role of this PPC area to processes that can regulate but not trigger eye movements.
Neuronal activity in posterior parietal cortex area LIP is not sufficient for saccadic eye movement production / Brunamonti, Emiliano; Paré, Martin. - In: FRONTIERS IN INTEGRATIVE NEUROSCIENCE. - ISSN 1662-5145. - 17:(2023), p. 1251431. [10.3389/fnint.2023.1251431]
Neuronal activity in posterior parietal cortex area LIP is not sufficient for saccadic eye movement production
Brunamonti, EmilianoPrimo
;
2023
Abstract
It is widely recognized that the posterior parietal cortex (PPC) plays a role in active exploration with eye movements, arm reaching, and hand grasping. Whether this role is causal in nature is largely unresolved. One region of the PPC appears dedicated to the control of saccadic eye movement-lateral intraparietal (LIP) area. This area LIP possesses direct projections to well-established oculomotor centers and contains neurons with movement-related activity. In this study, we tested whether these neurons are implicated in saccade initiation and production. The movement-related activity of LIP neurons was tested by recording these neurons while monkeys performed a countermanding task. We found that LIP neuronal activity is not different before the execution or the cancelation of commanded saccades and thereby is not sufficient for the initiation and production of saccades. Consistent with the evolutionarily late emergence of the PPC, this finding relegates the role of this PPC area to processes that can regulate but not trigger eye movements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.