Background and aims: Wall shear stress (WSS) has been associated with atherogenesis and plaque progression. The present study assessed the value of WSS analysis derived from conventional coronary angiography to detect lesions culprit for future myocardial infarction (MI). Methods and results: Three-dimensional quantitative coronary angiography (3DQCA), was used to calculate WSS and pressure drop in 80 patients. WSS descriptors were compared between 80 lesions culprit of future MI and 108 non-culprit lesions (controls). Endothelium-blood flow interaction was assessed by computational fluid dynamics (10.8 ± 1.41 min per vessel). Median time between baseline angiography and MI was 25.9 (21.9–29.8) months. Mean patient age was 70.3 ± 12.7. Clinical presentation was STEMI in 35% and NSTEMI in 65%. Culprit lesions showed higher percent area stenosis (%AS), translesional vFFR difference (ΔvFFR), time-averaged WSS (TAWSS) and topological shear variation index (TSVI) compared to non-culprit lesions (p < 0.05 for all). TSVI was superior to TAWSS in predicting MI (AUC-TSVI = 0.77, 95%CI 0.71–0.84 vs. AUC-TAWSS = 0.61, 95%CI 0.53–0.69, p < 0.001). The addition of TSVI increased predictive and reclassification abilities compared to a model based on %AS and ΔvFFR (NRI = 1.04, p < 0.001, IDI = 0.22, p < 0.001). Conclusions: A 3DQCA-based WSS analysis was feasible and can identify lesions culprit for future MI. The combination of area stenoses, pressure gradients and WSS predicted the occurrence of MI. TSVI, a novel WSS descriptor, showed strong predictive capacity to detect lesions prone to cause MI.

Risk of myocardial infarction based on endothelial shear stress analysis using coronary angiography / Candreva, A.; Pagnoni, M.; Rizzini, M. L.; Mizukami, T.; Gallinoro, E.; Mazzi, V.; Gallo, D.; Meier, D.; Shinke, T.; Aben, J. -P.; Nagumo, S.; Sonck, J.; Munhoz, D.; Fournier, S.; Barbato, E.; Heggermont, W.; Cook, S.; Chiastra, C.; Morbiducci, U.; De Bruyne, B.; Muller, O.; Collet, C.. - In: ATHEROSCLEROSIS. - ISSN 0021-9150. - 342:(2022), pp. 28-35. [10.1016/j.atherosclerosis.2021.11.010]

Risk of myocardial infarction based on endothelial shear stress analysis using coronary angiography

Fournier S.;Barbato E.;
2022

Abstract

Background and aims: Wall shear stress (WSS) has been associated with atherogenesis and plaque progression. The present study assessed the value of WSS analysis derived from conventional coronary angiography to detect lesions culprit for future myocardial infarction (MI). Methods and results: Three-dimensional quantitative coronary angiography (3DQCA), was used to calculate WSS and pressure drop in 80 patients. WSS descriptors were compared between 80 lesions culprit of future MI and 108 non-culprit lesions (controls). Endothelium-blood flow interaction was assessed by computational fluid dynamics (10.8 ± 1.41 min per vessel). Median time between baseline angiography and MI was 25.9 (21.9–29.8) months. Mean patient age was 70.3 ± 12.7. Clinical presentation was STEMI in 35% and NSTEMI in 65%. Culprit lesions showed higher percent area stenosis (%AS), translesional vFFR difference (ΔvFFR), time-averaged WSS (TAWSS) and topological shear variation index (TSVI) compared to non-culprit lesions (p < 0.05 for all). TSVI was superior to TAWSS in predicting MI (AUC-TSVI = 0.77, 95%CI 0.71–0.84 vs. AUC-TAWSS = 0.61, 95%CI 0.53–0.69, p < 0.001). The addition of TSVI increased predictive and reclassification abilities compared to a model based on %AS and ΔvFFR (NRI = 1.04, p < 0.001, IDI = 0.22, p < 0.001). Conclusions: A 3DQCA-based WSS analysis was feasible and can identify lesions culprit for future MI. The combination of area stenoses, pressure gradients and WSS predicted the occurrence of MI. TSVI, a novel WSS descriptor, showed strong predictive capacity to detect lesions prone to cause MI.
2022
Computation fluid dynamics; Myocardial infarction; Quantitative coronary angiography; Topological shear variation index; Virtual fractional flow reserve; Wall shear stress; Wall shear stress topological skeleton
01 Pubblicazione su rivista::01a Articolo in rivista
Risk of myocardial infarction based on endothelial shear stress analysis using coronary angiography / Candreva, A.; Pagnoni, M.; Rizzini, M. L.; Mizukami, T.; Gallinoro, E.; Mazzi, V.; Gallo, D.; Meier, D.; Shinke, T.; Aben, J. -P.; Nagumo, S.; Sonck, J.; Munhoz, D.; Fournier, S.; Barbato, E.; Heggermont, W.; Cook, S.; Chiastra, C.; Morbiducci, U.; De Bruyne, B.; Muller, O.; Collet, C.. - In: ATHEROSCLEROSIS. - ISSN 0021-9150. - 342:(2022), pp. 28-35. [10.1016/j.atherosclerosis.2021.11.010]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1700100
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact