Neuroanatomical findings on youth anxiety disorders are notoriously difficult to replicate, small in effect size and have limited clinical relevance. These concerns have prompted a paradigm shift toward highly powered (that is, big data) individual-level inferences, which are data driven, transdiagnostic and neurobiologically informed. Here we built and validated supervised neuroanatomical machine learning models for individual-level inferences, using a case–control design and the largest known neuroimaging database on youth anxiety disorders: the ENIGMA-Anxiety Consortium (N = 3,343; age = 10–25 years; global sites = 32). Modest, yet robust, brain- based classifications were achieved for specific anxiety disorders (panic disorder), but also transdiagnostically for all anxiety disorders when patients were subgrouped according to their sex, medication status and symptom severity (area under the receiver operating characteristic curve, 0.59–0.63). Classifications were driven by neuroanatomical features (cortical thickness, cortical surface area and subcortical volumes) in fronto- striato-limbic and temporoparietal regions. This benchmark study within a large, heterogeneous and multisite sample of youth with anxiety disorders reveals that only modest classification performances can be realistically achieved with machine learning using neuroanatomical data.

Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning / Bruin, Willem B.; Zhutovsky, Paul; van Wingen, Guido A.; Bas-Hoogendam, Janna Marie; Groenewold, Nynke A.; Hilbert, Kevin; Winkler, Anderson M.; Zugman, Andre; Agosta, Federica; Åhs, Fredrik; Andreescu, Carmen; Antonacci, Chase; Asami, Takeshi; Assaf, Michal; Barber, Jacques P.; Bauer, Jochen; Bavdekar, Shreya Y.; Beesdo-Baum, Katja; Benedetti, Francesco; Bernstein, Rachel; Björkstrand, Johannes; Blair, Robert J.; Blair, Karina S.; Blanco-Hinojo, Laura; Böhnlein, Joscha; Brambilla, Paolo; Bressan, Rodrigo A.; Breuer, Fabian; Cano, Marta; Canu, Elisa; Cardinale, Elise M.; Cardoner, Narcís; Cividini, Camilla; Cremers, Henk; Dannlowski, Udo; Diefenbach, Gretchen J.; Domschke, Katharina; Doruyter, Alexander G. G.; Dresler, Thomas; Erhardt, Angelika; Filippi, Massimo; Fonzo, Gregory A.; Freitag, Gabrielle F.; Furmark, Tomas; Ge, Tian; Gerber, Andrew J.; Gosnell, Savannah N.; Grabe, Hans J.; Grotegerd, Dominik; Gur, Ruben C.; Gur, Raquel E.; Hamm, Alfons O.; Han, Laura K. M.; Harper, Jennifer C.; Harrewijn, Anita; Heeren, Alexandre; Hofmann, David; Jackowski, Andrea P.; Jahanshad, Neda; Jett, Laura; Kaczkurkin, Antonia N.; Khosravi, Parmis; Kingsley, Ellen N.; Kircher, Tilo; Kostic, Milutin; Larsen, Bart; Lee, Sang-Hyuk; Leehr, Elisabeth J.; Leibenluft, Ellen; Lochner, Christine; Lui, Su; Maggioni, Eleonora; Manfro, Gisele G.; Månsson, Kristoffer N. T.; Marino, Claire E.; Meeten, Frances; Milrod, Barbara; Jovanovic, Ana Munjiza; Mwangi, Benson; Myers, Michael J.; Neufang, Susanne; Nielsen, Jared A.; Ohrmann, Patricia A.; Ottaviani, Cristina; Paulus, Martin P.; Perino, Michael T.; Phan, K. Luan; Poletti, Sara; Porta-Casteràs, Daniel; Pujol, Jesus; Reinecke, Andrea; Ringlein, Grace V.; Rjabtsenkov, Pavel; Roelofs, Karin; Salas, Ramiro; Salum, Giovanni A.; Satterthwaite, Theodore D.; Schrammen, Elisabeth; Sindermann, Lisa; Smoller, Jordan W.; Soares, Jair C.; Stark, Rudolf; Stein, Frederike; Straube, Thomas; Straube, Benjamin; Strawn, Jeffrey R.; Suarez-Jimenez, Benjamin; Sylvester, Chad M.; Talati, Ardesheer; Thomopoulos, Sophia I.; Tükel, Raşit; van Nieuwenhuizen, Helena; Werwath, Kathryn; Wittfeld, Katharina; Wright, Barry; Wu, Mon-Ju; Yang, Yunbo; Zilverstand, Anna; Zwanzger, Peter; Blackford, Jennifer U.; Avery, Suzanne N.; Clauss, Jacqueline A.; Lueken, Ulrike; Thompson, Paul M.; Pine, Daniel S.; Stein, Dan J.; van der Wee, Nic J. A.; Veltman, Dick J.; Aghajani, Moji. - In: NATURE MENTAL HEALTH. - ISSN 2731-6076. - 2:1(2024), pp. -118. [10.1038/s44220-023-00173-2]

Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning

Ottaviani, Cristina
Membro del Collaboration Group
;
2024

Abstract

Neuroanatomical findings on youth anxiety disorders are notoriously difficult to replicate, small in effect size and have limited clinical relevance. These concerns have prompted a paradigm shift toward highly powered (that is, big data) individual-level inferences, which are data driven, transdiagnostic and neurobiologically informed. Here we built and validated supervised neuroanatomical machine learning models for individual-level inferences, using a case–control design and the largest known neuroimaging database on youth anxiety disorders: the ENIGMA-Anxiety Consortium (N = 3,343; age = 10–25 years; global sites = 32). Modest, yet robust, brain- based classifications were achieved for specific anxiety disorders (panic disorder), but also transdiagnostically for all anxiety disorders when patients were subgrouped according to their sex, medication status and symptom severity (area under the receiver operating characteristic curve, 0.59–0.63). Classifications were driven by neuroanatomical features (cortical thickness, cortical surface area and subcortical volumes) in fronto- striato-limbic and temporoparietal regions. This benchmark study within a large, heterogeneous and multisite sample of youth with anxiety disorders reveals that only modest classification performances can be realistically achieved with machine learning using neuroanatomical data.
2024
Youth; Anxiety Disorders; Transdiagnostic
01 Pubblicazione su rivista::01a Articolo in rivista
Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning / Bruin, Willem B.; Zhutovsky, Paul; van Wingen, Guido A.; Bas-Hoogendam, Janna Marie; Groenewold, Nynke A.; Hilbert, Kevin; Winkler, Anderson M.; Zugman, Andre; Agosta, Federica; Åhs, Fredrik; Andreescu, Carmen; Antonacci, Chase; Asami, Takeshi; Assaf, Michal; Barber, Jacques P.; Bauer, Jochen; Bavdekar, Shreya Y.; Beesdo-Baum, Katja; Benedetti, Francesco; Bernstein, Rachel; Björkstrand, Johannes; Blair, Robert J.; Blair, Karina S.; Blanco-Hinojo, Laura; Böhnlein, Joscha; Brambilla, Paolo; Bressan, Rodrigo A.; Breuer, Fabian; Cano, Marta; Canu, Elisa; Cardinale, Elise M.; Cardoner, Narcís; Cividini, Camilla; Cremers, Henk; Dannlowski, Udo; Diefenbach, Gretchen J.; Domschke, Katharina; Doruyter, Alexander G. G.; Dresler, Thomas; Erhardt, Angelika; Filippi, Massimo; Fonzo, Gregory A.; Freitag, Gabrielle F.; Furmark, Tomas; Ge, Tian; Gerber, Andrew J.; Gosnell, Savannah N.; Grabe, Hans J.; Grotegerd, Dominik; Gur, Ruben C.; Gur, Raquel E.; Hamm, Alfons O.; Han, Laura K. M.; Harper, Jennifer C.; Harrewijn, Anita; Heeren, Alexandre; Hofmann, David; Jackowski, Andrea P.; Jahanshad, Neda; Jett, Laura; Kaczkurkin, Antonia N.; Khosravi, Parmis; Kingsley, Ellen N.; Kircher, Tilo; Kostic, Milutin; Larsen, Bart; Lee, Sang-Hyuk; Leehr, Elisabeth J.; Leibenluft, Ellen; Lochner, Christine; Lui, Su; Maggioni, Eleonora; Manfro, Gisele G.; Månsson, Kristoffer N. T.; Marino, Claire E.; Meeten, Frances; Milrod, Barbara; Jovanovic, Ana Munjiza; Mwangi, Benson; Myers, Michael J.; Neufang, Susanne; Nielsen, Jared A.; Ohrmann, Patricia A.; Ottaviani, Cristina; Paulus, Martin P.; Perino, Michael T.; Phan, K. Luan; Poletti, Sara; Porta-Casteràs, Daniel; Pujol, Jesus; Reinecke, Andrea; Ringlein, Grace V.; Rjabtsenkov, Pavel; Roelofs, Karin; Salas, Ramiro; Salum, Giovanni A.; Satterthwaite, Theodore D.; Schrammen, Elisabeth; Sindermann, Lisa; Smoller, Jordan W.; Soares, Jair C.; Stark, Rudolf; Stein, Frederike; Straube, Thomas; Straube, Benjamin; Strawn, Jeffrey R.; Suarez-Jimenez, Benjamin; Sylvester, Chad M.; Talati, Ardesheer; Thomopoulos, Sophia I.; Tükel, Raşit; van Nieuwenhuizen, Helena; Werwath, Kathryn; Wittfeld, Katharina; Wright, Barry; Wu, Mon-Ju; Yang, Yunbo; Zilverstand, Anna; Zwanzger, Peter; Blackford, Jennifer U.; Avery, Suzanne N.; Clauss, Jacqueline A.; Lueken, Ulrike; Thompson, Paul M.; Pine, Daniel S.; Stein, Dan J.; van der Wee, Nic J. A.; Veltman, Dick J.; Aghajani, Moji. - In: NATURE MENTAL HEALTH. - ISSN 2731-6076. - 2:1(2024), pp. -118. [10.1038/s44220-023-00173-2]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1699541
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact