Brain-Computer Interfaces allow controlling machines through signals coming from Electroencephalography (EEG) analysis. Nowadays, there are several cheap electroencephalographs available on the market that guarantee good quality EEG signals. A very interesting approach in this area is related to detecting the emotional states of a user through the analysis of her EEG signal. In our study, we tried to detect the emotional polarity (Valence), the state of emotional excitement (Arousal), and the level of emotion control (Dominance). Through metric interpolation and Russell's circumplex model, it is possible to characterize and define the current emotional state of the user who wears the device. Our study presents a prototype of an EEG-based emotion recognizer that provides the user's emotional state exploitable as bio-feedback.

Brain Computer Interface: Deep Learning Approach to Predict Human Emotion Recognition / Ardito, C.; Bortone, I.; Colafiglio, T.; Noia, T. D.; Sciascio, E. D.; Lofu, D.; Narducci, F.; Sardone, R.; Sorino, P.. - 2022:(2022), pp. 2689-2694. (Intervento presentato al convegno International Conference on Systems, Man, and Cybernetics tenutosi a Prague; Czech Republic) [10.1109/SMC53654.2022.9945554].

Brain Computer Interface: Deep Learning Approach to Predict Human Emotion Recognition

Ardito C.;Colafiglio T.
;
2022

Abstract

Brain-Computer Interfaces allow controlling machines through signals coming from Electroencephalography (EEG) analysis. Nowadays, there are several cheap electroencephalographs available on the market that guarantee good quality EEG signals. A very interesting approach in this area is related to detecting the emotional states of a user through the analysis of her EEG signal. In our study, we tried to detect the emotional polarity (Valence), the state of emotional excitement (Arousal), and the level of emotion control (Dominance). Through metric interpolation and Russell's circumplex model, it is possible to characterize and define the current emotional state of the user who wears the device. Our study presents a prototype of an EEG-based emotion recognizer that provides the user's emotional state exploitable as bio-feedback.
2022
International Conference on Systems, Man, and Cybernetics
Bio-Feedback; Deep Learning; Electroencephalographic; Emotion Recognition
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Brain Computer Interface: Deep Learning Approach to Predict Human Emotion Recognition / Ardito, C.; Bortone, I.; Colafiglio, T.; Noia, T. D.; Sciascio, E. D.; Lofu, D.; Narducci, F.; Sardone, R.; Sorino, P.. - 2022:(2022), pp. 2689-2694. (Intervento presentato al convegno International Conference on Systems, Man, and Cybernetics tenutosi a Prague; Czech Republic) [10.1109/SMC53654.2022.9945554].
File allegati a questo prodotto
File Dimensione Formato  
Ardito_Brain_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 823.6 kB
Formato Adobe PDF
823.6 kB Adobe PDF   Contatta l'autore
Ardito_preprint_Brain_2022.pdf

accesso aperto

Note: DOI: 10.1109/SMC53654.2022.9945554
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 748.61 kB
Formato Adobe PDF
748.61 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1699400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact