We have investigated the possibility to establish a theoretical plate height expression for the band broadening in the most widely used micro-pillar array column format, i.e., a cylindrical pillar array wherein the pillar walls and the channel bottom are coated with a thin layer of meso‑porous material. Assuming isotropic diffusion in the shell-layer, it was found that the vertical diffusive transport along the porous shell-layer covering the pillar walls significantly suppresses the band broadening originating from the vertical migration velocity gradients. As the vertical transport in the shell-layer increases linearly with the retention equilibrium constant K, this leads to an anomalous dependency on the retention factor. Indeed, instead of increasing with k’’ and following the classic (1+ak’’+bk’’2)/(1 + k’’)2-dependency governing a classic Taylor-Aris system, the variation of the mobile zone mass transfer resistance term hCm in a 3D pillar array with bottom-wall retention goes through a maximum (resp. factor 1.5 (k’’=4) and 2 (k’’=16) difference between observed and classic Taylor-Aris behaviour). This effect increases with increasing pillar heights and increasing reduced velocities. Because of this complex k’’-dependency, it proves very cumbersome to establish a general plate height equation covering all conditions. Instead, a plate height expression was established that is limited up to k’’=4, but remains accurate for higher k’’-values for cases where the ratio of pillar height over inter-pillar distance remains below 5. It can however be anticipated the proposed analytical model is only valid in a rather limited range around the presently considered external porosity of ε=0.5.

Theoretical computation of the band broadening in micro-pillar array columns / Moussa, A.; Huygens, B.; Venditti, C.; Adrover, A.; Desmet, G.. - In: JOURNAL OF CHROMATOGRAPHY A. - ISSN 0021-9673. - 1715:(2024), p. 464607. [10.1016/j.chroma.2023.464607]

Theoretical computation of the band broadening in micro-pillar array columns

Venditti C.;Adrover A.;
2024

Abstract

We have investigated the possibility to establish a theoretical plate height expression for the band broadening in the most widely used micro-pillar array column format, i.e., a cylindrical pillar array wherein the pillar walls and the channel bottom are coated with a thin layer of meso‑porous material. Assuming isotropic diffusion in the shell-layer, it was found that the vertical diffusive transport along the porous shell-layer covering the pillar walls significantly suppresses the band broadening originating from the vertical migration velocity gradients. As the vertical transport in the shell-layer increases linearly with the retention equilibrium constant K, this leads to an anomalous dependency on the retention factor. Indeed, instead of increasing with k’’ and following the classic (1+ak’’+bk’’2)/(1 + k’’)2-dependency governing a classic Taylor-Aris system, the variation of the mobile zone mass transfer resistance term hCm in a 3D pillar array with bottom-wall retention goes through a maximum (resp. factor 1.5 (k’’=4) and 2 (k’’=16) difference between observed and classic Taylor-Aris behaviour). This effect increases with increasing pillar heights and increasing reduced velocities. Because of this complex k’’-dependency, it proves very cumbersome to establish a general plate height equation covering all conditions. Instead, a plate height expression was established that is limited up to k’’=4, but remains accurate for higher k’’-values for cases where the ratio of pillar height over inter-pillar distance remains below 5. It can however be anticipated the proposed analytical model is only valid in a rather limited range around the presently considered external porosity of ε=0.5.
2024
Band broadening; Brenner's general theory of dispersion; Computational fluid dynamics; Micro-LC; Micro-pillar array columns; Plate height model
01 Pubblicazione su rivista::01a Articolo in rivista
Theoretical computation of the band broadening in micro-pillar array columns / Moussa, A.; Huygens, B.; Venditti, C.; Adrover, A.; Desmet, G.. - In: JOURNAL OF CHROMATOGRAPHY A. - ISSN 0021-9673. - 1715:(2024), p. 464607. [10.1016/j.chroma.2023.464607]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1699176
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact