We consider the microcanonical variational principle for the vortex system in a bounded domain. In particular we are interested in the thermodynamic properties of the system in domains of the second kind, i.e., for which the equivalence of ensembles does not hold. For connected domains close to the union of disconnected disks (dumbbell domains), we show that the system may exhibit an arbitrary number of first-order phase transitions, while the entropy is convex for large energy

Microcanonical phase transitions for the vortex system / Benedetto, Dario; Caglioti, Emanuele; Nolasco, Margherita. - In: MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS. - ISSN 2325-3444. - 12:1(2024), pp. 85-112. [10.2140/memocs.2024.12.85]

Microcanonical phase transitions for the vortex system

Dario Benedetto
;
Emanuele Caglioti;
2024

Abstract

We consider the microcanonical variational principle for the vortex system in a bounded domain. In particular we are interested in the thermodynamic properties of the system in domains of the second kind, i.e., for which the equivalence of ensembles does not hold. For connected domains close to the union of disconnected disks (dumbbell domains), we show that the system may exhibit an arbitrary number of first-order phase transitions, while the entropy is convex for large energy
2024
mean-field equation, microcanonical ensemble, vortex system, phase transitions
01 Pubblicazione su rivista::01a Articolo in rivista
Microcanonical phase transitions for the vortex system / Benedetto, Dario; Caglioti, Emanuele; Nolasco, Margherita. - In: MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS. - ISSN 2325-3444. - 12:1(2024), pp. 85-112. [10.2140/memocs.2024.12.85]
File allegati a questo prodotto
File Dimensione Formato  
Benedetto_Microcanonical_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1699032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact