We present an analytic construction of complete noncompact 8–dimensional Ricciflat manifolds with holonomy Spin.7/. The construction relies on the study of the adiabatic limit of metrics with holonomy Spin.7/ on principal Seifert circle bundles over asymptotically conical G2 –orbifolds. The metrics we produce have an asymptotic geometry, so-called ALC geometry, that generalises to higher dimensions the geometry of 4–dimensional ALF hyperkähler metrics. We apply our construction to asymptotically conical G2 –metrics arising from selfdual Einstein 4–orbifolds with positive scalar curvature. As illustrative examples of the power of our construction, we produce complete noncompact Spin.7/–manifolds with arbitrarily large second Betti number and infinitely many distinct families of ALC Spin.7/–metrics on the same smooth 8–manifold.
Complete noncompact Spin(7)–manifolds from self-dual Einstein 4–orbifolds / Foscolo, L.. - In: GEOMETRY & TOPOLOGY. - ISSN 1465-3060. - 25:1(2021), pp. 339-408. [10.2140/gt.2021.25.339]
Complete noncompact Spin(7)–manifolds from self-dual Einstein 4–orbifolds
Foscolo L.
2021
Abstract
We present an analytic construction of complete noncompact 8–dimensional Ricciflat manifolds with holonomy Spin.7/. The construction relies on the study of the adiabatic limit of metrics with holonomy Spin.7/ on principal Seifert circle bundles over asymptotically conical G2 –orbifolds. The metrics we produce have an asymptotic geometry, so-called ALC geometry, that generalises to higher dimensions the geometry of 4–dimensional ALF hyperkähler metrics. We apply our construction to asymptotically conical G2 –metrics arising from selfdual Einstein 4–orbifolds with positive scalar curvature. As illustrative examples of the power of our construction, we produce complete noncompact Spin.7/–manifolds with arbitrarily large second Betti number and infinitely many distinct families of ALC Spin.7/–metrics on the same smooth 8–manifold.File | Dimensione | Formato | |
---|---|---|---|
Foscolo_postprint_Complete_2021.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | |
Foscolo_Complete_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
759.98 kB
Formato
Adobe PDF
|
759.98 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.