According to the standard view, the function of the unlimited dunamis argument (PhysicsVIII.10,MetaphysicsΛ.7 1073a5–11) is to introduce a new property of the first immovable mover, namely its lack of magnitude. The paper challenges this view and argues that the argument at issue serves to prove that the eternal motion of the first heavenly sphere is caused by an immovable mover rather than by a moved mover. Further, the paper shows that, at least in Phys.VIII, the unlimited dunamis argument is the main argument for the immobility of the Prime Mover.

Aristotle’s unlimited dunamis argument: an unrecognized proof of the immobility of the Prime Mover / Quarantotto, Diana. - In: BRITISH JOURNAL FOR THE HISTORY OF PHILOSOPHY. - ISSN 1469-3526. - (2023), pp. 1-13. [10.1080/09608788.2023.2261504]

Aristotle’s unlimited dunamis argument: an unrecognized proof of the immobility of the Prime Mover

Diana Quarantotto
2023

Abstract

According to the standard view, the function of the unlimited dunamis argument (PhysicsVIII.10,MetaphysicsΛ.7 1073a5–11) is to introduce a new property of the first immovable mover, namely its lack of magnitude. The paper challenges this view and argues that the argument at issue serves to prove that the eternal motion of the first heavenly sphere is caused by an immovable mover rather than by a moved mover. Further, the paper shows that, at least in Phys.VIII, the unlimited dunamis argument is the main argument for the immobility of the Prime Mover.
2023
Aristotle; metaphysics; Prime Mover; unlimited dunamis argument
01 Pubblicazione su rivista::01a Articolo in rivista
Aristotle’s unlimited dunamis argument: an unrecognized proof of the immobility of the Prime Mover / Quarantotto, Diana. - In: BRITISH JOURNAL FOR THE HISTORY OF PHILOSOPHY. - ISSN 1469-3526. - (2023), pp. 1-13. [10.1080/09608788.2023.2261504]
File allegati a questo prodotto
File Dimensione Formato  
Quarantotto_Aristotle's-unlimited-dunamis-argument_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1697825
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact