Simulations of single-particle tracking involving collimation systems need dedicated tools to perform the different tasks needed. These include the accurate description of particle-matter interactions when a tracked particle impacts a collimator jaw; a detailed aperture model to identify the longitudinal location of losses; and others. One such tool is the K2 code in SixTrack, which describes the scattering of high-energy protons in matter. This code has recently been ported into the Xsuite tracking code that is being developed at CERN. Another approach is to couple the tracking with existing tools, such as FLUKA or Geant4, that offer better descriptions of particle-matter interactions and can treat lepton and ion beams. This includes the generation of secondary particles and fragmentation when tracking ions. In addition to the development of coupling with Geant4, the SixTrack-FLUKA coupling has recently been translated and integrated into the Xsuite environment as well. In this paper, we present the ongoing development of these tools. A thorough testing of the new implementation was performed, using as case studies various collimation layout configurations for the LHC Run 3.
Recent developments with the new tools for collimation simulations in Xsuite / Van der Veken, F. F.; Abramov, A.; Broggi, G.; Cerutti, F.; D’Andrea, M.; Demetriadou, D.; Esposito, L. S.; Hugo, G.; Iadarola, G.; Lindström, B.; Redaelli, S.; Rodin, V.; Triantafyllou, N.. - (2023), pp. 474-478. (Intervento presentato al convegno 68th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB 2023) tenutosi a Genève) [10.18429/JACoW-HB2023-THBP13].
Recent developments with the new tools for collimation simulations in Xsuite
G. Broggi;
2023
Abstract
Simulations of single-particle tracking involving collimation systems need dedicated tools to perform the different tasks needed. These include the accurate description of particle-matter interactions when a tracked particle impacts a collimator jaw; a detailed aperture model to identify the longitudinal location of losses; and others. One such tool is the K2 code in SixTrack, which describes the scattering of high-energy protons in matter. This code has recently been ported into the Xsuite tracking code that is being developed at CERN. Another approach is to couple the tracking with existing tools, such as FLUKA or Geant4, that offer better descriptions of particle-matter interactions and can treat lepton and ion beams. This includes the generation of secondary particles and fragmentation when tracking ions. In addition to the development of coupling with Geant4, the SixTrack-FLUKA coupling has recently been translated and integrated into the Xsuite environment as well. In this paper, we present the ongoing development of these tools. A thorough testing of the new implementation was performed, using as case studies various collimation layout configurations for the LHC Run 3.File | Dimensione | Formato | |
---|---|---|---|
VanderVeken_Recent_2023.pdf
accesso aperto
Note: Atto di convegno in volume
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.48 MB
Formato
Adobe PDF
|
2.48 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.