Large Language Models (LLMs) are becoming increasingly flexible and reliable: the large pre-training phase enables them to capture a large number of real-world linguistic phenomena. However, pre-training on large amounts of data can also cause the representation of harmful biases. In this paper, we propose a method for identifying the presence of gender bias using a list of occupations characterized by a large imbalance between the number of male and female employees.

Investigating Gender Bias in Large Language Models for the Italian Language / Sofia Ruzzetti, Elena; Onorati, Dario; Ranaldi, Leonardo; Venditti, Davide; Massimo Zanzotto, Fabio. - 3596:(2023). ( Italian Conference on Computational Linguistics 2023 Venice; Italy ).

Investigating Gender Bias in Large Language Models for the Italian Language

Dario Onorati
Membro del Collaboration Group
;
2023

Abstract

Large Language Models (LLMs) are becoming increasingly flexible and reliable: the large pre-training phase enables them to capture a large number of real-world linguistic phenomena. However, pre-training on large amounts of data can also cause the representation of harmful biases. In this paper, we propose a method for identifying the presence of gender bias using a list of occupations characterized by a large imbalance between the number of male and female employees.
2023
Italian Conference on Computational Linguistics 2023
Natural Language Processing; LLMs; social bias
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Investigating Gender Bias in Large Language Models for the Italian Language / Sofia Ruzzetti, Elena; Onorati, Dario; Ranaldi, Leonardo; Venditti, Davide; Massimo Zanzotto, Fabio. - 3596:(2023). ( Italian Conference on Computational Linguistics 2023 Venice; Italy ).
File allegati a questo prodotto
File Dimensione Formato  
Ruzzetti_Investigating_2023.pdf

accesso aperto

Note: https://ceur-ws.org/Vol-3596/
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 262.27 kB
Formato Adobe PDF
262.27 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1696813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact