Floating offshore wind turbine (FOWT) rotors have complex aero-elastic dynamics due to atmospheric turbulence, interaction with front turbine wakes, and motion of the floating platform. This work investigates the dynamics of wake and wake-rotor interaction in a offshore wind farm, using a reduced order model based on the Actuator Line Model and a finite element model of the blade structure. The approach allows for high-resolution computational fluid dynamics simulations of the evolution and transport of rotor wakes, while reducing computational costs by using a simplified model of the blade. The analysis starts with a reference case of rigid and fixed-bottom turbines and then incorporates the rigid body motion of the floating platform and finally the elastic response of the blades. The fluid dynamics are computed using detached eddy simulation, and the simulation framework is based on open-source tools for computational fluid dynamics and Actuator Line Model, coupled with an in-house developed finite element method solver for fluid-structure interaction.

Investigation of turbines wakes and wake-rotor interaction in a floating offshore wind farm / Castorrini, A.; Morici, V.; De Girolamo, F.; Tieghi, L.; Barnabei, V. F.; Corsini, A.. - (2023), pp. 242-249. (Intervento presentato al convegno 7th Offshore Energy & Storage Symposium (OSES 2023) tenutosi a St. Julian's, Malta) [10.1049/icp.2023.1576].

Investigation of turbines wakes and wake-rotor interaction in a floating offshore wind farm

A. Castorrini
Primo
;
V. Morici;F. De Girolamo;L. Tieghi;V. F. Barnabei;A. Corsini
2023

Abstract

Floating offshore wind turbine (FOWT) rotors have complex aero-elastic dynamics due to atmospheric turbulence, interaction with front turbine wakes, and motion of the floating platform. This work investigates the dynamics of wake and wake-rotor interaction in a offshore wind farm, using a reduced order model based on the Actuator Line Model and a finite element model of the blade structure. The approach allows for high-resolution computational fluid dynamics simulations of the evolution and transport of rotor wakes, while reducing computational costs by using a simplified model of the blade. The analysis starts with a reference case of rigid and fixed-bottom turbines and then incorporates the rigid body motion of the floating platform and finally the elastic response of the blades. The fluid dynamics are computed using detached eddy simulation, and the simulation framework is based on open-source tools for computational fluid dynamics and Actuator Line Model, coupled with an in-house developed finite element method solver for fluid-structure interaction.
2023
7th Offshore Energy & Storage Symposium (OSES 2023)
rotors (mechanical); wind turbines; offshore installations; wakes; blades; elasticity; flow simulation; finite element analysis; wind power plants; atmospheric turbulence; computational fluid dynamics
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Investigation of turbines wakes and wake-rotor interaction in a floating offshore wind farm / Castorrini, A.; Morici, V.; De Girolamo, F.; Tieghi, L.; Barnabei, V. F.; Corsini, A.. - (2023), pp. 242-249. (Intervento presentato al convegno 7th Offshore Energy & Storage Symposium (OSES 2023) tenutosi a St. Julian's, Malta) [10.1049/icp.2023.1576].
File allegati a questo prodotto
File Dimensione Formato  
Castorrini_Investigation_2023.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 660.7 kB
Formato Adobe PDF
660.7 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1696258
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact